dragonfly.c 61.2 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1
2
3
4
5
6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7
8
9
10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11
12
13
14
15
16
#include <ross.h>

#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
17
18
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
19
20
21
22

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

23
24
25
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
26
#define DRAGONFLY_COLLECTIVE_DEBUG 0
27
28
29
30
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0

31
32
33
34
35
// debugging parameters
#define TRACK 235221
#define PRINT_ROUTER_TABLE 1
#define DEBUG 1

36
37
38
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

39
40
static double maxd(double a, double b) { return a < b ? b : a; }

41
42
// arrival rate
static double MEAN_INTERVAL=200.0;
43
44
// threshold for adaptive routing
static int adaptive_threshold = 10;
45
46

/* minimal and non-minimal packet counts for adaptive routing*/
47
int minimal_count=0, nonmin_count=0;
48

49
50
51
52
53
54
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
55
56

/* global variables for codes mapping */
57
static char lp_group_name[MAX_NAME_LENGTH];
58
59
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int routing; /* minimal or non-minimal routing */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/

    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
    int num_global_channels;
};

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
130
131
132

   const char * anno;
   const dragonfly_param *params;
133
};
134

135
136
137
138
139
140
141
142
143
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
144
145
146
147
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
171
172
173
    MINIMAL = 0,
    NON_MINIMAL,
    ADAPTIVE
174
175
176
177
178
179
180
181
182
183
184
185
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
   int* vc_occupancy;
   int* output_vc_state;
186
187
188

   const char * anno;
   const dragonfly_param *params;
189
190
191
192
193
194
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
195
static tw_stime         max_collective = 0;
196
197
198
199
200
201
202
203
204
205
206
207
208
209


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}

210
211
212
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

    configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
            &p->num_vcs);
    if(p->num_vcs <= 0) {
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
    }

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
    if(!p->local_vc_size) {
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
    if(!p->global_vc_size) {
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
    if(!p->cn_vc_size) {
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
    if(!p->chunk_size) {
        p->chunk_size = 64;
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
    if(!p->local_bandwidth) {
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
    if(!p->global_bandwidth) {
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
    if(!p->cn_bandwidth) {
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }


    char routing[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing,
            MAX_NAME_LENGTH);
    if(strcmp(routing, "minimal") == 0)
        p->routing = 0;
    else if(strcmp(routing, "nonminimal")==0 || strcmp(routing,"non-minimal")==0)
        p->routing = 1;
    else if (strcmp(routing, "adaptive") == 0)
        p->routing = 2;
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
        p->routing = 0;
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
    p->radix = p->num_vcs *
        (p->num_cn + p->num_global_channels + p->num_routers);
    p->total_routers = p->num_groups * p->num_routers;
}

static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
    all_params = malloc(num_params * sizeof(*all_params));

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i];
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
310
311
312
313
314
315
316
317
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
/* TODO: Add dragonfly packet average, maximum latency and average number of hops traversed */
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
318
   int total_minimal_packets, total_nonmin_packets;
319
320
321
322
323

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
324
325
326
327
328
   if(routing == ADAPTIVE)
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
329
330
331
332
333

   /* print statistics */
   if(!g_tw_mynode)
   {
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
334
335
336
337
     if(routing == ADAPTIVE)
              printf("\n ADAPTIVE ROUTING STATS: %d packets routed minimally %d packets routed non-minimally ", total_minimal_packets, total_nonmin_packets);
 
  }
338
339
   return;
}
340

341
342
343
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
344
345
346
347
348
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

399
/* dragonfly packet event , generates a dragonfly packet on the compute node */
400
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, const mn_sched_params *sched_params, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
401
402
403
404
405
406
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

407
    xfer_to_nic_time = codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
408
409
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
410
411
412
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
413
414
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
415
    msg->sender_lp=src_lp;
416
417
418
419
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
420
421
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
438
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
439
    tw_event_send(e_new);
440
    return xfer_to_nic_time;
441
442
443
444
445
446
447
448
449
450
451
452
453
454
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

/* given a group ID gid, find the router in the current group that is attached
 * to a router in the group gid */
tw_lpid getRouterFromGroupID(int gid, 
		    router_state * r)
{
455
456
457
458
    const dragonfly_param *p = r->params;
  int group_begin = r->group_id * p->num_routers;
  int group_end = (r->group_id * p->num_routers) + p->num_routers-1;
  int offset = (gid * p->num_routers - group_begin) / p->num_routers;
459
  
460
461
  if((gid * p->num_routers) < group_begin)
    offset = (group_begin - gid * p->num_routers) / p->num_routers; // take absolute value
462
  
463
464
  int half_channel = p->num_global_channels / 2;
  int index = (offset - 1)/(half_channel * p->num_routers);
465
  
466
  offset=(offset - 1) % (half_channel * p->num_routers);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
487
  int is_terminal = 0;
488

489
  const dragonfly_param *p = s->params;
490
491
492
493
494
 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
   //determine the time in ns to transfer the credit
495
   credit_delay = (1 / p->cn_bandwidth) * CREDIT_SIZE;
496
   type = T_BUFFER;
497
   is_terminal = 1;
498
499
500
501
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
502
     credit_delay = (1 / p->global_bandwidth) * CREDIT_SIZE;
503
504
505
506
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
507
     	credit_delay = (1/p->local_bandwidth) * CREDIT_SIZE;
508
509
510
511
512
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
513
    int output_port = msg->saved_vc / p->num_vcs;
514
    msg->saved_available_time = s->next_credit_available_time[output_port];
515
    s->next_credit_available_time[output_port] = maxd(tw_now(lp), s->next_credit_available_time[output_port]);
516
    ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
517
518
	
    s->next_credit_available_time[output_port]+=ts;
519
520
521
522
523
524
525
526
527
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
                s->next_credit_available_time[output_port] - tw_now(lp), lp,
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
        buf_e = tw_event_new(dest, s->next_credit_available_time[output_port] - tw_now(lp) , lp);
        buf_msg = tw_event_data(buf_e);
    }
528
529
530
531
532
533
534
535
536
537
538
539
540
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
541
    tw_lpid dest_terminal_id;
542
543
    dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
            msg->final_dest_gid);
544
545
546
547
    msg->dest_terminal_id = dest_terminal_id;

    const dragonfly_param *p = s->params;

548
549
550
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
551
  int i, total_event_size;
552
553
554
  uint64_t num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
      num_chunks++;
555
556
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
557
  msg->my_N_hop = 0;
558
559
  for(i = 0; i < num_chunks; i++)
  {
560
561
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
562
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
563
	int chan = -1, j;
564
	for(j = 0; j < p->num_vcs; j++)
565
	 {
566
	     if(s->vc_occupancy[j] < p->cn_vc_size * num_chunks)
567
568
569
570
571
572
	      {
	       chan=j;
	       break;
	      }
         }

573
574
575
576
577
578
579
580
        // this is a terminal event, so use the method-event version
       //e = tw_event_new(lp->gid, i + ts, lp);
       //m = tw_event_data(e);
       //memcpy(m, msg, sizeof(terminal_message) + msg->remote_event_size_bytes + msg->local_event_size_bytes);
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
581
       m->dest_terminal_id = dest_terminal_id;
582
583
584
585
586
587
588
589
590
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
       
       if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
       
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
612
613
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
614
615
616
617
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
618
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
619
620
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
637
   double head_delay = (1/s->params->cn_bandwidth) * s->params->chunk_size;
638
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
639
   s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
640
641
   s->terminal_available_time += ts;

642
643
644
645
646
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
           s->router_id, 0, &router_id);
647
   // we are sending an event to the router, so no method_event here
648
649
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

650
651
652
653
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;

654
655
656
   if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
     printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
   m = tw_event_data(e);
657
658
659
660
661
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
662
663
664
665
666
667
668
669
670
671
672
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
   m->local_event_size_bytes = 0;
   tw_event_send(e);
//  Each chunk is 32B and the VC occupancy is in chunks to enable efficient flow control

   if(msg->chunk_id == num_chunks - 1) 
    {
673
674
675
      // now that message is sent, issue an "idle" event to tell the scheduler
      // when I'm next available
      model_net_method_idle_event(codes_local_latency(lp) +
676
              s->terminal_available_time - tw_now(lp), 0, lp);
677

678
679
680
681
682
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
683
684
685
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
686
	   ts = g_tw_lookahead + (1/s->params->cn_bandwidth) * msg->local_event_size_bytes;
687
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
688
689
690
691
692
693
694
695
696
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

697
   if(s->vc_occupancy[vc] >= (s->params->cn_vc_size * num_chunks))
698
699
700
701
702
703
704
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
705
706
707
    uint64_t num_chunks = msg->packet_size / s->params->chunk_size;
    if (msg->packet_size % s->params->chunk_size)
        num_chunks++;
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
#if DEBUG
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
733
734
735
736
737
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

738
739
740
741
742
743
744
745
746
747
748
749
750
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
751
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
752
            ts = g_tw_lookahead + 0.1 + (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
753
            if (msg->is_pull){
754
                int net_id = model_net_get_id(LP_METHOD_NM);
755
756
757
758
759
760
761
762
763
764
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
765
766
767
	}
  }

768
  int credit_delay = (1 / s->params->cn_bandwidth) * CREDIT_SIZE;
769
  ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, credit_delay/1000);
770
  
771
  msg->saved_credit_time = s->next_credit_available_time;
772
  s->next_credit_available_time = maxd(s->next_credit_available_time, tw_now(lp));
773
774
775
  s->next_credit_available_time += ts;

  tw_lpid router_dest_id;
776
777
778
  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
          &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
779
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0,
780
          s->router_id, 0, &router_dest_id);
781
  // no method_event here - message going to router
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
  buf_e = tw_event_new(router_dest_id, s->next_credit_available_time - tw_now(lp), lp);
  buf_msg = tw_event_data(buf_e);
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    int i;
799
800
    char anno[MAX_NAME_LENGTH];

801
    // Assign the global router ID
802
    // TODO: be annotation-aware
803
804
805
806
807
808
809
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
810
        s->anno = strdup(anno);
811
812
813
814
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

815
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
816
           s->anno, 0);
817
818

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
Misbah Mubarak's avatar
Misbah Mubarak committed
819
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
820
821
822
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

823
824
   s->vc_occupancy = (int*)malloc(s->params->num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(s->params->num_vcs * sizeof(int));
825

826
   for( i = 0; i < s->params->num_vcs; i++ )
827
828
829
830
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
831
   dragonfly_collective_init(s, lp);
832
833
834
   return;
}

835
836
837
838
839
840
841
842
843
/* collective operation for the torus network */
void dragonfly_collective(char* category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

844
845
846
847
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
848

849
    xfer_to_nic_time = codes_local_latency(sender);
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
889
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
918
919
920
921
922
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
923
924
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
925
926
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

957
958
959
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
960
                s->anno, 0);
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
979
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
980
981
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
1018
1019
1020
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
                        s->children[i]/num_lps, (s->children[i] % num_lps),
                        &child_nic_id);
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
1031
	                memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
1049
1050
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
                NULL, 1);
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
1072
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM,
1073
                                s->anno, 0, s->children[i]/num_lps,
1074
                                (s->children[i] % num_lps), &child_nic_id);
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
1142
1143
1144
1145
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1146

1147
1148
1149
1150
1151
1152
1153
1154
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1155
1156
1157
1158
1159
1160
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1161
dragonfly_terminal_final( terminal_state * s, 
1162
1163
      tw_lp * lp )
{
1164
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1165
1166
}

1167
1168
1169
1170
1171
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
		      int path)
{
   int dest_lp;
1183
   tw_lpid router_dest_id = -1;
1184
1185
1186
   int i;
   int dest_group_id;

1187
1188
1189
1190
1191
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
           &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
           &mapping_offset); 
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1192
1193
           s->anno, 0);
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / s->params->num_routers;
1194
   
1195
1196
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1197
1198
1199
1200
   int local_router_id = (mapping_offset + mapping_rep_id);

   bf->c2 = 0;

1201
  /* If the packet has arrived at the destination router */
1202
1203
1204
1205
1206
1207
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;

        return dest_lp;
    }
1208
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1209
   if(msg->last_hop == TERMINAL && msg->path_type == NON_MINIMAL)
1210
    {
1211
      if(dest_router_id / s->params->num_routers != s->group_id)
1212
1213
         {
            bf->c2 = 1;
1214
            int intm_grp_id = tw_rand_integer(lp->rng, 0, s->params->num_groups-1);
1215
1216
            //int intm_grp_id = (s->group_id + s->group_id/2) % num_groups;
	    msg->intm_group_id = intm_grp_id;
1217
1218
          }    
    }
1219
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1220
1221
1222
1223
   if(msg->intm_group_id == s->group_id)
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1224
  /* Intermediate group ID is set. Divert the packet to an intermediate group. */
1225
1226
1227
1228
  if(msg->intm_group_id >= 0)
   {
      dest_group_id = msg->intm_group_id;
   }
1229
  else /* direct the packet to the destination group */
1230
   {
1231
     dest_group_id = dest_router_id / s->params->num_routers;
1232
1233
   }
  
1234
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1235
1236
1237
1238
1239
1240
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1241
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1242
1243
1244
1245
      dest_lp=getRouterFromGroupID(dest_group_id,s);
  
      if(dest_lp == local_router_id)
      {
1246
        for(i=0; i < s->params->num_global_channels; i++)
1247
           {
1248
            if(s->global_channel[i] / s->params->num_routers == dest_group_id)
1249
1250
1251
1252
                dest_lp=s->global_channel[i];
          }
      }
   }
1253
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0, dest_lp,
1254
          0, &router_dest_id);
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
  return router_dest_id;
}

/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
1267
1268
1269
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
          &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
          &mapping_offset);
1270
  int num_lps = codes_mapping_get_lp_count(lp_group_name,1,LP_CONFIG_NM,s->anno,0);
1271
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1272
1273
1274

  if(next_stop == msg->dest_terminal_id)
   {
1275
1276
      output_port = s->params->num_routers + s->params->num_global_channels +
          ( terminal_id % s->params->num_cn);
1277
1278
      //if(output_port > 6)
	//      printf("\n incorrect output port %d terminal id %d ", output_port, terminal_id);
1279
1280
1281
    }
    else
    {
1282
1283
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id,
             NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1284
     int local_router_id = mapping_rep_id + mapping_offset;
1285
     int intm_grp_id = local_router_id / s->params->num_routers;
1286
1287
1288

     if(intm_grp_id != s->group_id)
      {
1289
        for(i=0; i < s->params->num_global_channels; i++)
1290
         {
1291
           if(s->global_channel[i] == local_router_id)
1292
             output_port = s->params->num_routers + i;
1293
1294
1295
1296
          }
      }
      else
       {
1297
        output_port = local_router_id % s->params->num_routers;
1298
       }
1299
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    }
    return output_port;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
1310
//   *(int *)bf = (int)0;
1311
1312
1313
1314
1315
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
1316
1317
   float bandwidth = s->params->local_bandwidth;
   int path = s->params->routing;
1318
   int minimal_out_port = -1, nonmin_out_port = -1;
1319
1320
   bf->c3 = 0;

1321
1322
1323
1324
1325
1326
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
    

   if(msg->last_hop == TERMINAL && s->params->routing == ADAPTIVE)
1327
   {
1328
1329
1330
1331
1332
1333
1334
  // decide which routing to take
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL);
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL);
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
1335
1336
    int nonmin_vc = s->vc_occupancy[nonmin_out_port * s->params->num_vcs + 2];
    int min_vc = s->vc_occupancy[minimal_out_port * s->params->num_vcs + 1];
1337
1338

    // Adaptive routing condition from the dragonfly paper Page 83
1339
   // modified according to booksim adaptive routing condition
1340
1341
1342
   if((min_vc <= (nonmin_vc * 2 + adaptive_threshold) && minimal_out_port == nonmin_out_port)
               || (min_port_count <= (nonmin_port_count * 2 + adaptive_threshold) && minimal_out_port != nonmin_out_port))
        {
1343
	   msg->path_type = MINIMAL;
1344
1345
1346
1347
           next_stop = minimal_next_stop;
           output_port = minimal_out_port;
           minimal_count++;
           msg->intm_group_id = -1;
1348

1349
1350
1351
1352
1353
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
1354
	   msg->path_type = NON_MINIMAL;
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
           next_stop = nonmin_next_stop;
           output_port = nonmin_out_port;
           nonmin_count++;
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

         }
  }
  else
   {
1365
	msg->path_type = routing; /*defaults to the routing algorithm if we don't have adaptive routing here*/
1366
1367
1368
   	next_stop = get_next_stop(s, bf, msg, lp, path);
   	output_port = get_output_port(s, bf, msg, lp, next_stop); 
   }
1369
   output_chan = output_port * s->params->num_vcs;
1370

1371
    // Even numbered channels for minimal routing
1372
   // Odd numbered channels for nonminimal routing
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
   // Separate the queue occupancy into minimal and non minimal virtual channels if the min & non min
   // paths start at the same output port
   /*if((routing == ADAPTIVE) && (minimal_out_port == nonmin_out_port))
   {
        if(path == MINIMAL)
          output_chan = output_chan + 1;
        else
          if(path == NON_MINIMAL)
            output_chan = output_chan + 2;
   }*/

1384
   int global=0;
1385
   int buf_size = s->params->local_vc_size;
1386

1387
1388
   assert(output_port != -1);
   assert(output_chan != -1);
1389
   // Allocate output Virtual Channel
1390
1391
  if(output_port >= s->params->num_routers && 
          output_port < s->params->num_routers + s->params->num_global_channels)
1392
  {
1393
	 bandwidth = s->params->global_bandwidth;
1394
	 global = 1;
1395
	 buf_size = s->params->global_vc_size;
1396
1397
  }

1398
1399
  if(output_port >= s->params->num_routers + s->params->num_global_channels)
	buf_size = s->params->cn_vc_size;
1400
1401
1402

   if(s->vc_occupancy[output_chan] >= buf_size)
    {
1403
	    printf("\n %lf Router %ld buffers overflowed from incoming terminals channel %d occupancy %d radix %d next_stop %d ", tw_now(lp),(long int) lp->gid, output_chan, s->vc_occupancy[output_chan], s->params->radix, next_stop);
1404
	    bf->c3 = 1;
1405
1406