dragonfly.c 78.1 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21 22 23 24

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

25 26 27
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
28
#define DRAGONFLY_COLLECTIVE_DEBUG 0
29 30 31
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
32
#define WINDOW_LENGTH 0
33

34
// debugging parameters
35
#define TRACK -1
36
#define PRINT_ROUTER_TABLE 1
37
#define DEBUG 0
38
#define USE_DIRECT_SCHEME 1
39

40 41 42
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

43
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
44

45 46
static double maxd(double a, double b) { return a < b ? b : a; }

47
/* minimal and non-minimal packet counts for adaptive routing*/
48
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
49

50 51 52 53 54 55
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
56 57

/* global variables for codes mapping */
58
static char lp_group_name[MAX_NAME_LENGTH];
59 60
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

61 62 63 64 65 66
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

67 68 69 70 71 72 73
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
74

75 76 77 78 79 80 81
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
82

83 84 85 86
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
105
    int total_terminals;
106
    int num_global_channels;
107 108 109 110
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
111 112
};

113 114 115 116 117 118 119 120 121 122 123
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
124 125
   unsigned int router_id;
   unsigned int terminal_id;
126 127 128

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
129
   int num_vcs;
130 131
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
132 133 134
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
135 136 137 138
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
163 164 165

   const char * anno;
   const dragonfly_param *params;
166
};
167

168 169 170 171 172
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
173
  T_SEND,
174
  T_BUFFER,
175 176
  R_SEND,
  R_ARRIVE,
177 178 179 180
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
204 205
    MINIMAL = 0,
    NON_MINIMAL,
206 207
    ADAPTIVE,
    PROG_ADAPTIVE
208 209 210 211 212 213
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
214 215
  
   int* global_channel; 
216
   
217 218
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
219
   tw_stime* cur_hist_start_time;
220 221 222 223 224
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
225
   
226 227
   int** vc_occupancy;
   int* link_traffic;
228 229 230

   const char * anno;
   const dragonfly_param *params;
231 232 233

   int* prev_hist_num;
   int* cur_hist_num;
234 235 236 237 238 239
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
240
static tw_stime         max_collective = 0;
241 242 243 244 245


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

246 247 248 249 250 251 252 253 254 255 256 257 258 259
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
260

261 262
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
263
{
264 265
	   return sizeof(terminal_message);
}
266

267 268 269 270 271 272 273 274 275 276 277 278
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
279 280
}

281 282 283 284 285 286 287 288 289 290 291 292 293
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
294

295 296 297 298 299 300 301 302 303 304 305 306
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        new_entry->event_data = (void*)malloc(msg->remote_event_size_bytes);
        memcpy(new_entry->event_data, m_data, msg->remote_event_size_bytes);
307
    }
308
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
309 310
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
342 343
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
    msg->packet_size = cur_msg->packet_size;
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
383 384 385
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
386

387 388 389 390 391 392 393 394
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

395
    /*configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
396
            &p->num_vcs);
397
    if(p->num_vcs <= 0) {
398 399
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
400 401 402
    }*/
    
    p->num_vcs = 3;
403 404

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
405
    if(!p->local_vc_size) {
406 407 408 409 410
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
411
    if(!p->global_vc_size) {
412 413 414 415 416
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
417
    if(!p->cn_vc_size) {
418 419 420 421 422
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
423
    if(!p->chunk_size) {
424
        p->chunk_size = 64;
425
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
426 427 428
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
429
    if(!p->local_bandwidth) {
430 431 432 433 434
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
435
    if(!p->global_bandwidth) {
436 437 438 439 440
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
441
    if(!p->cn_bandwidth) {
442 443 444 445
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

446 447
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
448
            MAX_NAME_LENGTH);
449 450
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
451 452
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
453 454 455 456 457
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
458 459 460 461
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
462
        routing = -1;
463 464 465 466 467 468
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
469
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
470
    p->total_routers = p->num_groups * p->num_routers;
471
    p->total_terminals = p->total_routers * p->num_cn;
472 473 474 475 476 477 478
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
479
    
480 481 482 483
    p->cn_delay = (1.0 / p->cn_bandwidth) * p->chunk_size;
    p->local_delay = (1.0 / p->local_bandwidth) * p->chunk_size;
    p->global_delay = (1.0 / p->global_bandwidth) * p->chunk_size;
    p->credit_delay = (1.0 / p->local_bandwidth) * 8; //assume 8 bytes packet
484 485 486

}

487 488 489 490
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
491
    all_params = malloc(num_params * sizeof(*all_params));
492 493

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
494
        const char * anno = anno_map->annotations[i].ptr;
495 496 497 498 499
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
500 501 502 503 504 505 506
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
507
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
508 509 510 511 512

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
513
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
514 515 516
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
517
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
518
    }
519

520 521
   /* print statistics */
   if(!g_tw_mynode)
522
   {	
523
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
524
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
525
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
526 527
 
  }
528 529
   return;
}
530

531 532 533
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
534 535 536 537 538
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
   s->in_send_loop = 0;

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
647
{
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
690
   for(int i=0; i < p->radix; i++)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
710
        for(int j = 0; j < p->num_vcs; j++) {
711 712 713 714 715 716 717 718 719 720 721 722 723 724
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
725
       for(int i=0; i < p->num_global_channels; i++)
726 727 728 729 730 731 732 733 734 735 736 737 738
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
739 740 741
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
static tw_stime dragonfly_packet_event(const char* category, 
    tw_lpid final_dest_lp, tw_lpid dest_mn_lp, 
    uint64_t packet_size, int is_pull, 
    uint64_t pull_size, tw_stime offset, const mn_sched_params *sched_params, 
    int remote_event_size, const void* remote_event, int self_event_size, 
    const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt) {
776 777 778 779 780
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

781 782 783 784
    xfer_to_nic_time = codes_local_latency(sender); 
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
785 786
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
787 788
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
789
    msg->sender_lp=src_lp;
790 791 792 793
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
794 795
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
796
    msg->magic = terminal_magic_num;
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
813
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
814
    tw_event_send(e_new);
815
    return xfer_to_nic_time;
816 817 818 819 820 821 822 823 824
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

825 826 827
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
828 829
		    int num_routers,
                    int total_groups)
830
{
831 832 833 834 835 836 837
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
838 839 840
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
841
  
842 843
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
844
  
845 846
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
847
  
848
  offset=(offset - 1) % (half_channel * num_routers);
849 850 851 852 853 854 855 856 857 858

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
859
#endif
860 861 862
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
863 864
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
865 866 867 868
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

869
  int dest = 0,  type = R_BUFFER;
870
  int is_terminal = 0;
871

872
  const dragonfly_param *p = s->params;
873 874 875 876 877 878 879 880 881 882 883 884 885
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

886
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
887
	
888 889 890 891 892 893 894 895 896 897 898 899 900 901
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
902
    buf_msg->vc_index = msg->saved_vc;
903 904 905 906
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
907

908 909
  tw_event_send(buf_e);
  return;
910 911
}

912
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
913
{
914 915 916
   term_rev_ecount++;
   term_ecount--;

917 918
   tw_rand_reverse_unif(lp->rng);

919 920 921
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
922

923 924
   if(!num_chunks)
       num_chunks++;
925

926 927 928 929 930 931 932 933 934 935 936
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
        tw_rand_reverse_unif(lp->rng);
        s->in_send_loop = 0;
    }
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
937 938 939 940
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
941

942
/* generates packet at the current dragonfly compute node */
943 944 945
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
946

947 948 949 950 951
  tw_stime ts;
  tw_lpid dest_terminal_id;
  dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
      msg->final_dest_gid);
  msg->dest_terminal_id = dest_terminal_id;
952

953
  const dragonfly_param *p = s->params;
954

955 956
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
  model_net_method_idle_event(ts, 0, lp);
957

958 959 960 961 962 963 964 965 966
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size) num_chunks++;
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter; 
  msg->travel_start_time = tw_now(lp);
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
967

968 969 970 971 972
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
988

989 990 991 992
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);
  }
993

994 995 996 997 998 999 1000 1001 1002 1003 1004
  if(s->in_send_loop == 0) {
    bf->c5 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    s->in_send_loop = 1;
    tw_event_send(e);
  }
1005

1006 1007 1008 1009 1010 1011 1012 1013
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
1014
	  stat->max_event_size = total_event_size;
1015

1016 1017 1018
  return;
}

1019 1020
void packet_send_rc(terminal_state * s, tw_bf * bf, terminal_message * msg,
        tw_lp * lp)
1021
{
1022 1023
      term_ecount--;
      term_rev_ecount++;
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
      if(bf->c1) {
        s->in_send_loop = 1;
        return;
      }
      
      s->terminal_available_time = msg->saved_available_time;
      tw_rand_reverse_unif(lp->rng);
      if(bf->c2) {
        codes_local_latency_reverse(lp);
      }
     
      s->packet_counter--;
      s->vc_occupancy[0] -= s->params->chunk_size;
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
      create_prepend_to_terminal_message_list(s->terminal_msgs,
          s->terminal_msgs_tail, 0, msg);
      if(bf->c3) {
        tw_rand_reverse_unif(lp->rng);
      }
      if(bf->c4) {
        s->in_send_loop = 1;
      }
    return;
}
/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  
  term_ecount++;
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
  terminal_message_list* cur_entry = s->terminal_msgs[0];

  if(s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size 
      || cur_entry == NULL) {
    bf->c1 = 1;
    s->in_send_loop = 0;
    //printf("[%d] Skipping send %d %d\n", lp->gid, cur_entry == NULL, 
    //  (s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size));
    return;
  }

  msg->saved_available_time = s->terminal_available_time;
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
  s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
  s->terminal_available_time += ts;

  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
      &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
      s->router_id, 0, &router_id);
  // we are sending an event to the router, so no method_event here
  e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);
  m = tw_event_data(e);
  memcpy(m, &cur_entry->msg, sizeof(terminal_message));
  if (m->remote_event_size_bytes){
    memcpy(model_net_method_get_edata(DRAGONFLY, m), cur_entry->event_data,
        m->remote_event_size_bytes);
  }
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
  m->origin_router_id = s->router_id;
  m->type = R_ARRIVE;
  m->src_terminal_id = lp->gid;
  m->vc_index = 0;
  m->last_hop = TERMINAL;
  m->intm_group_id = -1;
  m->magic = router_magic_num;
  m->path_type = -1;
  m->local_event_size_bytes = 0;
  m->local_id = s->terminal_id;
  tw_event_send(e);

  int num_chunks = cur_entry->msg.packet_size/s->params->chunk_size;
  if(cur_entry->msg.packet_size % s->params->chunk_size)
    num_chunks++;

  if(cur_entry->msg.chunk_id == num_chunks - 1 && 
      (cur_entry->msg.local_event_size_bytes > 0)) {
    bf->c2 = 1;
    ts = codes_local_latency(lp); 
    tw_event *e_new = tw_event_new(cur_entry->msg.sender_lp, ts, lp);
    terminal_message* m_new = tw_event_data(e_new);
    void *local_event = (char*)cur_entry->event_data + 
      cur_entry->msg.remote_event_size_bytes;
    memcpy(m_new, local_event, cur_entry->msg.local_event_size_bytes);
    tw_event_send(e_new);
  }
  s->packet_counter++;
  s->vc_occupancy[0] += s->params->chunk_size;
  cur_entry = return_head(s->terminal_msgs, s->terminal_msgs_tail, 0); 
  copy_terminal_list_entry(cur_entry, msg);
  delete_terminal_message_list(cur_entry);

  cur_entry = s->terminal_msgs[0];
  
  if(cur_entry != NULL &&
    s->vc_occupancy[0] + s->params->chunk_size <= s->params->cn_vc_size) {
    bf->c3 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    tw_event_send(e);
  } else {
    bf->c4 = 1;
    s->in_send_loop = 0;
  }
  return;
1139
}
1140 1141

void packet_arrive_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
1142
{
1143 1144
      term_ecount--;
      term_rev_ecount++;
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
      completed_packets--;
      if(msg->path_type == MINIMAL)
        minimal_count--;
      if(msg->path_type == NON_MINIMAL)
        nonmin_count--;

      if(bf->c2) {
        mn_stats* stat;
        stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
        stat->recv_count--;
        stat->recv_bytes -= msg->packet_size;
        stat->recv_time -= tw_now(lp) - msg->travel_start_time;
        N_finished_packets--;
        dragonfly_total_time -= (tw_now(lp) - msg->travel_start_time);
        total_hops -= msg->my_N_hop;
        if(bf->c3)
          dragonfly_max_latency = msg->saved_available_time;

        if(bf->c4)
        {
           int net_id = model_net_get_id(LP_METHOD_NM);
           model_net_event_rc(net_id, lp, msg->pull_size);
1168

1169 1170 1171 1172
        }
      }
      msg->my_N_hop--;
      tw_rand_reverse_unif(lp->rng);
1173

1174 1175 1176 1177