dragonfly.c 60.8 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1
2
3
4
5
6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7
8
9
10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11
12
13
14
15
16
#include <ross.h>

#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
17
18
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
19
20
21
22

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

23
24
25
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
26
#define DRAGONFLY_COLLECTIVE_DEBUG 0
27
28
29
30
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0

31
32
33
34
35
// debugging parameters
#define TRACK 235221
#define PRINT_ROUTER_TABLE 1
#define DEBUG 1

36
37
38
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

39
40
static double maxd(double a, double b) { return a < b ? b : a; }

41
42
// arrival rate
static double MEAN_INTERVAL=200.0;
43
44
// threshold for adaptive routing
static int adaptive_threshold = 10;
45
46

/* minimal and non-minimal packet counts for adaptive routing*/
47
int minimal_count=0, nonmin_count=0;
48

49
50
51
52
53
54
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
55
56

/* global variables for codes mapping */
57
static char lp_group_name[MAX_NAME_LENGTH];
58
59
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int routing; /* minimal or non-minimal routing */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/

    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
    int num_global_channels;
};

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
130
131
132

   const char * anno;
   const dragonfly_param *params;
133
};
134

135
136
137
138
139
140
141
142
143
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
144
145
146
147
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
171
172
173
    MINIMAL = 0,
    NON_MINIMAL,
    ADAPTIVE
174
175
176
177
178
179
180
181
182
183
184
185
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
   int* vc_occupancy;
   int* output_vc_state;
186
187
188

   const char * anno;
   const dragonfly_param *params;
189
190
191
192
193
194
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
195
static tw_stime         max_collective = 0;
196
197
198
199
200
201
202
203
204
205
206
207
208
209


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}

210
211
212
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

    configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
            &p->num_vcs);
    if(p->num_vcs <= 0) {
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
    }

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
    if(!p->local_vc_size) {
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
    if(!p->global_vc_size) {
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
    if(!p->cn_vc_size) {
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
    if(!p->chunk_size) {
        p->chunk_size = 64;
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
    if(!p->local_bandwidth) {
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
    if(!p->global_bandwidth) {
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
    if(!p->cn_bandwidth) {
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }


    char routing[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing,
            MAX_NAME_LENGTH);
    if(strcmp(routing, "minimal") == 0)
        p->routing = 0;
    else if(strcmp(routing, "nonminimal")==0 || strcmp(routing,"non-minimal")==0)
        p->routing = 1;
    else if (strcmp(routing, "adaptive") == 0)
        p->routing = 2;
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
        p->routing = 0;
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
    p->radix = p->num_vcs *
        (p->num_cn + p->num_global_channels + p->num_routers);
    p->total_routers = p->num_groups * p->num_routers;
}

static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
    all_params = malloc(num_params * sizeof(*all_params));

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i];
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
310
311
312
313
314
315
316
317
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
/* TODO: Add dragonfly packet average, maximum latency and average number of hops traversed */
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
318
   int total_minimal_packets, total_nonmin_packets;
319
320
321
322
323

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
324
325
326
327
328
   if(routing == ADAPTIVE)
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
329
330
331
332
333

   /* print statistics */
   if(!g_tw_mynode)
   {
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
334
335
336
337
     if(routing == ADAPTIVE)
              printf("\n ADAPTIVE ROUTING STATS: %d packets routed minimally %d packets routed non-minimally ", total_minimal_packets, total_nonmin_packets);
 
  }
338
339
   return;
}
340

341
342
343
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
344
345
346
347
348
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

399
/* dragonfly packet event , generates a dragonfly packet on the compute node */
400
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
401
402
403
404
405
406
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

407
    xfer_to_nic_time = codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
408
409
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
410
411
412
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
413
414
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
415
    msg->sender_lp=src_lp;
416
417
418
419
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
420
421
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
438
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
439
    tw_event_send(e_new);
440
    return xfer_to_nic_time;
441
442
443
444
445
446
447
448
449
450
451
452
453
454
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

/* given a group ID gid, find the router in the current group that is attached
 * to a router in the group gid */
tw_lpid getRouterFromGroupID(int gid, 
		    router_state * r)
{
455
456
457
458
    const dragonfly_param *p = r->params;
  int group_begin = r->group_id * p->num_routers;
  int group_end = (r->group_id * p->num_routers) + p->num_routers-1;
  int offset = (gid * p->num_routers - group_begin) / p->num_routers;
459
  
460
461
  if((gid * p->num_routers) < group_begin)
    offset = (group_begin - gid * p->num_routers) / p->num_routers; // take absolute value
462
  
463
464
  int half_channel = p->num_global_channels / 2;
  int index = (offset - 1)/(half_channel * p->num_routers);
465
  
466
  offset=(offset - 1) % (half_channel * p->num_routers);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
487
  int is_terminal = 0;
488

489
  const dragonfly_param *p = s->params;
490
491
492
493
494
 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
   //determine the time in ns to transfer the credit
495
   credit_delay = (1 / p->cn_bandwidth) * CREDIT_SIZE;
496
   type = T_BUFFER;
497
   is_terminal = 1;
498
499
500
501
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
502
     credit_delay = (1 / p->global_bandwidth) * CREDIT_SIZE;
503
504
505
506
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
507
     	credit_delay = (1/p->local_bandwidth) * CREDIT_SIZE;
508
509
510
511
512
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
513
    int output_port = msg->saved_vc / p->num_vcs;
514
    msg->saved_available_time = s->next_credit_available_time[output_port];
515
    s->next_credit_available_time[output_port] = maxd(tw_now(lp), s->next_credit_available_time[output_port]);
516
    ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
517
518
	
    s->next_credit_available_time[output_port]+=ts;
519
520
521
522
523
524
525
526
527
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
                s->next_credit_available_time[output_port] - tw_now(lp), lp,
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
        buf_e = tw_event_new(dest, s->next_credit_available_time[output_port] - tw_now(lp) , lp);
        buf_msg = tw_event_data(buf_e);
    }
528
529
530
531
532
533
534
535
536
537
538
539
540
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
541
542
543
544
545
546
547
548
549
    tw_lpid dest_terminal_id;
    codes_mapping_get_lp_info(msg->final_dest_gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
            mapping_rep_id, mapping_offset, &dest_terminal_id);
    msg->dest_terminal_id = dest_terminal_id;

    const dragonfly_param *p = s->params;

550
551
552
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
553
  int i, total_event_size;
554
555
556
  uint64_t num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
      num_chunks++;
557
558
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
559
  msg->my_N_hop = 0;
560
561
  for(i = 0; i < num_chunks; i++)
  {
562
563
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
564
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
565
	int chan = -1, j;
566
	for(j = 0; j < p->num_vcs; j++)
567
	 {
568
	     if(s->vc_occupancy[j] < p->cn_vc_size * num_chunks)
569
570
571
572
573
574
	      {
	       chan=j;
	       break;
	      }
         }

575
576
577
578
579
580
581
582
        // this is a terminal event, so use the method-event version
       //e = tw_event_new(lp->gid, i + ts, lp);
       //m = tw_event_data(e);
       //memcpy(m, msg, sizeof(terminal_message) + msg->remote_event_size_bytes + msg->local_event_size_bytes);
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
583
       m->dest_terminal_id = dest_terminal_id;
584
585
586
587
588
589
590
591
592
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
       
       if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
       
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
614
615
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
616
617
618
619
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
620
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
621
622
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
638
   double head_delay = (1/s->params->cn_bandwidth) * s->params->chunk_size;
639
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
640
   s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
641
642
   s->terminal_available_time += ts;

643
644
645
646
647
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
           s->router_id, 0, &router_id);
648
   // we are sending an event to the router, so no method_event here
649
650
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

651
652
653
654
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;

655
656
657
   if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
     printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
   m = tw_event_data(e);
658
659
660
661
662
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
   m->local_event_size_bytes = 0;
   tw_event_send(e);
//  Each chunk is 32B and the VC occupancy is in chunks to enable efficient flow control

   if(msg->chunk_id == num_chunks - 1) 
    {
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
679
680
681
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
682
	   ts = g_tw_lookahead + (1/s->params->cn_bandwidth) * msg->local_event_size_bytes;
683
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
684
685
686
687
688
689
690
691
692
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

693
   if(s->vc_occupancy[vc] >= (s->params->cn_vc_size * num_chunks))
694
695
696
697
698
699
700
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
701
702
703
    uint64_t num_chunks = msg->packet_size / s->params->chunk_size;
    if (msg->packet_size % s->params->chunk_size)
        num_chunks++;
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
#if DEBUG
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
729
730
731
732
733
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

734
735
736
737
738
739
740
741
742
743
744
745
746
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
747
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
748
            ts = g_tw_lookahead + 0.1 + (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
749
            if (msg->is_pull){
750
                int net_id = model_net_get_id(LP_METHOD_NM);
751
752
753
754
755
756
757
758
759
760
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
761
762
763
	}
  }

764
  int credit_delay = (1 / s->params->cn_bandwidth) * CREDIT_SIZE;
765
  ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, credit_delay/1000);
766
  
767
  msg->saved_credit_time = s->next_credit_available_time;
768
  s->next_credit_available_time = maxd(s->next_credit_available_time, tw_now(lp));
769
770
771
  s->next_credit_available_time += ts;

  tw_lpid router_dest_id;
772
773
774
  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
          &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
775
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0,
776
          s->router_id, 0, &router_dest_id);
777
  // no method_event here - message going to router
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
  buf_e = tw_event_new(router_dest_id, s->next_credit_available_time - tw_now(lp), lp);
  buf_msg = tw_event_data(buf_e);
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    int i;
795
796
    char anno[MAX_NAME_LENGTH];

797
    // Assign the global router ID
798
    // TODO: be annotation-aware
799
800
801
802
803
804
805
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
806
        s->anno = strdup(anno);
807
808
809
810
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

811
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
812
           s->anno, 0);
813
814

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
815
   s->router_id=(int)s->terminal_id / s->params->num_routers;
816
817
818
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

819
820
   s->vc_occupancy = (int*)malloc(s->params->num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(s->params->num_vcs * sizeof(int));
821

822
   for( i = 0; i < s->params->num_vcs; i++ )
823
824
825
826
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
827
   dragonfly_collective_init(s, lp);
828
829
830
   return;
}

831
832
833
834
835
836
837
838
839
/* collective operation for the torus network */
void dragonfly_collective(char* category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

840
841
842
843
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
844

845
    xfer_to_nic_time = codes_local_latency(sender);
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
885
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
914
915
916
917
918
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
919
920
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
921
922
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

953
954
955
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
956
                s->anno, 0);
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
975
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
976
977
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
1014
1015
1016
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
                        s->children[i]/num_lps, (s->children[i] % num_lps),
                        &child_nic_id);
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
1027
	                memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
1045
1046
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
                NULL, 1);
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
1068
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM,
1069
                                s->anno, 0, s->children[i]/num_lps,
1070
                                (s->children[i] % num_lps), &child_nic_id);
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
1138
1139
1140
1141
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1142

1143
1144
1145
1146
1147
1148
1149
1150
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1151
1152
1153
1154
1155
1156
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1157
dragonfly_terminal_final( terminal_state * s, 
1158
1159
      tw_lp * lp )
{
1160
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1161
1162
}

1163
1164
1165
1166
1167
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
		      int path)
{
   int dest_lp;
1179
   tw_lpid router_dest_id = -1;
1180
1181
1182
   int i;
   int dest_group_id;

1183
1184
1185
1186
1187
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
           &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
           &mapping_offset); 
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1188
1189
           s->anno, 0);
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / s->params->num_routers;
1190
   
1191
1192
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1193
1194
1195
1196
   int local_router_id = (mapping_offset + mapping_rep_id);

   bf->c2 = 0;

1197
  /* If the packet has arrived at the destination router */
1198
1199
1200
1201
1202
1203
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;

        return dest_lp;
    }
1204
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1205
   if(msg->last_hop == TERMINAL && msg->path_type == NON_MINIMAL)
1206
    {
1207
      if(dest_router_id / s->params->num_routers != s->group_id)
1208
1209
         {
            bf->c2 = 1;
1210
            int intm_grp_id = tw_rand_integer(lp->rng, 0, s->params->num_groups-1);
1211
1212
            //int intm_grp_id = (s->group_id + s->group_id/2) % num_groups;
	    msg->intm_group_id = intm_grp_id;
1213
1214
          }    
    }
1215
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1216
1217
1218
1219
   if(msg->intm_group_id == s->group_id)
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1220
  /* Intermediate group ID is set. Divert the packet to an intermediate group. */
1221
1222
1223
1224
  if(msg->intm_group_id >= 0)
   {
      dest_group_id = msg->intm_group_id;
   }
1225
  else /* direct the packet to the destination group */
1226
   {
1227
     dest_group_id = dest_router_id / s->params->num_routers;
1228
1229
   }
  
1230
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1231
1232
1233
1234
1235
1236
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1237
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1238
1239
1240
1241
      dest_lp=getRouterFromGroupID(dest_group_id,s);
  
      if(dest_lp == local_router_id)
      {
1242
        for(i=0; i < s->params->num_global_channels; i++)
1243
           {
1244
            if(s->global_channel[i] / s->params->num_routers == dest_group_id)
1245
1246
1247
1248
                dest_lp=s->global_channel[i];
          }
      }
   }
1249
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0, dest_lp,
1250
          0, &router_dest_id);
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
  return router_dest_id;
}

/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
1263
1264
1265
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
          &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
          &mapping_offset);
1266
  int num_lps = codes_mapping_get_lp_count(lp_group_name,1,LP_CONFIG_NM,s->anno,0);
1267
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1268
1269
1270

  if(next_stop == msg->dest_terminal_id)
   {
1271
1272
      output_port = s->params->num_routers + s->params->num_global_channels +
          ( terminal_id % s->params->num_cn);
1273
1274
      //if(output_port > 6)
	//      printf("\n incorrect output port %d terminal id %d ", output_port, terminal_id);
1275
1276
1277
    }
    else
    {
1278
1279
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id,
             NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1280
     int local_router_id = mapping_rep_id + mapping_offset;
1281
     int intm_grp_id = local_router_id / s->params->num_routers;
1282
1283
1284

     if(intm_grp_id != s->group_id)
      {
1285
        for(i=0; i < s->params->num_global_channels; i++)
1286
         {
1287
           if(s->global_channel[i] == local_router_id)
1288
             output_port = s->params->num_routers + i;
1289
1290
1291
1292
          }
      }
      else
       {
1293
        output_port = local_router_id % s->params->num_routers;
1294
       }
1295
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
    }
    return output_port;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
1306
//   *(int *)bf = (int)0;
1307
1308
1309
1310
1311
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
1312
1313
   float bandwidth = s->params->local_bandwidth;
   int path = s->params->routing;
1314
   int minimal_out_port = -1, nonmin_out_port = -1;
1315
1316
   bf->c3 = 0;

1317
1318
1319
1320
1321
1322
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
    

   if(msg->last_hop == TERMINAL && s->params->routing == ADAPTIVE)
1323
   {
1324
1325
1326
1327
1328
1329
1330
  // decide which routing to take
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL);
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL);
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
1331
1332
    int nonmin_vc = s->vc_occupancy[nonmin_out_port * s->params->num_vcs + 2];
    int min_vc = s->vc_occupancy[minimal_out_port * s->params->num_vcs + 1];
1333
1334

    // Adaptive routing condition from the dragonfly paper Page 83
1335
   // modified according to booksim adaptive routing condition
1336
1337
1338
   if((min_vc <= (nonmin_vc * 2 + adaptive_threshold) && minimal_out_port == nonmin_out_port)
               || (min_port_count <= (nonmin_port_count * 2 + adaptive_threshold) && minimal_out_port != nonmin_out_port))
        {
1339
	   msg->path_type = MINIMAL;
1340
1341
1342
1343
           next_stop = minimal_next_stop;
           output_port = minimal_out_port;
           minimal_count++;
           msg->intm_group_id = -1;
1344

1345
1346
1347
1348
1349
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
1350
	   msg->path_type = NON_MINIMAL;
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
           next_stop = nonmin_next_stop;
           output_port = nonmin_out_port;
           nonmin_count++;
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

         }
  }
  else
   {
1361
	msg->path_type = routing; /*defaults to the routing algorithm if we don't have adaptive routing here*/
1362
1363
1364
   	next_stop = get_next_stop(s, bf, msg, lp, path);
   	output_port = get_output_port(s, bf, msg, lp, next_stop); 
   }
1365
   output_chan = output_port * s->params->num_vcs;
1366

1367
    // Even numbered channels for minimal routing
1368
   // Odd numbered channels for nonminimal routing
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
   // Separate the queue occupancy into minimal and non minimal virtual channels if the min & non min
   // paths start at the same output port
   /*if((routing == ADAPTIVE) && (minimal_out_port == nonmin_out_port))
   {
        if(path == MINIMAL)
          output_chan = output_chan + 1;
        else
          if(path == NON_MINIMAL)
            output_chan = output_chan + 2;
   }*/

1380
   int global=0;
1381
   int buf_size = s->params->local_vc_size;
1382

1383
1384
   assert(output_port != -1);
   assert(output_chan != -1);
1385
   // Allocate output Virtual Channel
1386
1387
  if(output_port >= s->params->num_routers && 
          output_port < s->params->num_routers + s->params->num_global_channels)
1388
  {
1389
	 bandwidth = s->params->global_bandwidth;
1390
	 global = 1;
1391
	 buf_size = s->params->global_vc_size;
1392
1393
  }

1394
1395
  if(output_port >= s->params->num_routers + s->params->num_global_channels)
	buf_size = s->params->cn_vc_size;
1396
1397
1398

   if(s->vc_occupancy[output_chan] >= buf_size)
    {
1399
	    printf("\n %lf Router %ld buffers overflowed from incoming terminals channel %d occupancy %d radix %d next_stop %d ", tw_now(lp),(long int) lp->gid, output_chan, s->vc_occupancy[output_chan], s->params->radix, next_stop);
1400
	    bf->c3 = 1;
1401
1402
1403
	    return;
	    //MPI_Finalize();
	    //exit(-1);
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
    }

#if DEBUG
if( msg->packet_ID == TRACK && next_stop != msg->dest_terminal_id && msg->chunk_id == num_chunks-1)
  {
   printf("\n (%lf) [Router %d] Packet %lld being sent to intermediate group router %d Final destination terminal %d Output Channel Index %d Saved vc %d msg_intm_id %d \n", 
              tw_now(lp), (int)lp->gid, msg->packet_ID, next_stop, 
	      msg->dest_terminal_id, output_chan, msg->saved_vc, msg->intm_group_id);
  }
#endif
 // If source router doesn't have global channel and buffer space is available, then assign to appropriate intra-group virtual channel 
  msg->saved_available_time = s->next_output_available_time[output_port];
1416
  ts = g_tw_lookahead + 0.1 + ((1/bandwidth) * s->params->chunk_size) + tw_rand_exponential(lp->rng, (double)s->params->chunk_size/200);
1417