dragonfly.c 85 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21
#include "codes/quickhash.h"
22 23 24

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0
25
#define MAX_GEN_PACKETS 2000000
26

27 28 29
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
30
#define DRAGONFLY_COLLECTIVE_DEBUG 0
31 32 33
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
34
#define WINDOW_LENGTH 0
35
#define DFLY_HASH_TABLE_SIZE 10000
36

37
// debugging parameters
Misbah Mubarak's avatar
Misbah Mubarak committed
38 39
#define TRACK -1
#define TRACK_MSG -1
40
#define PRINT_ROUTER_TABLE 1
Misbah Mubarak's avatar
Misbah Mubarak committed
41 42
#define DEBUG 0
#define USE_DIRECT_SCHEME 1
43

44 45 46
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

47
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
48

49 50
static double maxd(double a, double b) { return a < b ? b : a; }

51
/* minimal and non-minimal packet counts for adaptive routing*/
52
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
53

54 55 56 57 58 59
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
60 61

/* global variables for codes mapping */
62
static char lp_group_name[MAX_NAME_LENGTH];
63 64
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

65 66 67 68 69 70
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

71 72 73 74 75 76 77
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
78

79 80 81 82 83 84 85
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
86

87 88 89 90
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
109
    int total_terminals;
110
    int num_global_channels;
111 112 113 114
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
115 116
};

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

132 133 134 135 136 137 138 139
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
140
   uint64_t packet_counter;
141 142

   // Dragonfly specific parameters
143 144
   unsigned int router_id;
   unsigned int terminal_id;
145 146 147

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
148
   int num_vcs;
149 150
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
151 152 153
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
154 155 156 157
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
182 183 184

   const char * anno;
   const dragonfly_param *params;
185

186 187
   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;
188
};
189

190 191 192 193 194
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
195
  T_SEND,
196
  T_BUFFER,
197 198
  R_SEND,
  R_ARRIVE,
199 200 201 202
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
226 227
    MINIMAL = 0,
    NON_MINIMAL,
228 229
    ADAPTIVE,
    PROG_ADAPTIVE
230 231 232 233 234 235
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
236 237
  
   int* global_channel; 
238
   
239 240
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
241
   tw_stime* cur_hist_start_time;
242 243 244 245 246
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
247
   
248 249
   int** vc_occupancy;
   int* link_traffic;
250 251 252

   const char * anno;
   const dragonfly_param *params;
253 254 255

   int* prev_hist_num;
   int* cur_hist_num;
256 257 258 259 260 261
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
262
static tw_stime         max_collective = 0;
263 264 265 266 267


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

268 269 270 271 272 273 274 275 276 277 278 279 280 281
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
282 283 284 285 286 287 288 289 290 291 292 293 294 295
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
296

297 298
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
299
{
300 301
	   return sizeof(terminal_message);
}
302

303 304 305 306 307 308 309 310 311 312 313 314
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
315 316
}

317 318 319 320 321 322 323 324 325 326 327 328 329
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
330

331 332 333 334 335 336 337 338 339 340
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
341 342 343
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
344
    }
345
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
407
    msg->sender_mn_lp = cur_msg->sender_mn_lp;
408
    msg->total_size = cur_msg->total_size;
409
    msg->packet_size = cur_msg->packet_size;
410
    msg->message_id = cur_msg->message_id;
411 412 413 414 415 416 417 418 419 420 421 422
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
423 424 425
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
426

427 428 429 430 431 432 433 434
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

435
    p->num_vcs = 3;
436 437

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
438
    if(!p->local_vc_size) {
439 440 441 442 443
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
444
    if(!p->global_vc_size) {
445 446 447 448 449
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
450
    if(!p->cn_vc_size) {
451 452 453 454 455
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
456
    if(!p->chunk_size) {
457
        p->chunk_size = 512;
458
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
459 460 461
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
462
    if(!p->local_bandwidth) {
463 464 465 466 467
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
468
    if(!p->global_bandwidth) {
469 470 471 472 473
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
474
    if(!p->cn_bandwidth) {
475 476 477 478
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

479 480
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
481
            MAX_NAME_LENGTH);
482 483
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
484 485
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
486 487 488 489 490
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
491 492 493 494
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
495
        routing = -1;
496 497 498 499 500 501
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
502
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
503
    p->total_routers = p->num_groups * p->num_routers;
504
    p->total_terminals = p->total_routers * p->num_cn;
505 506 507 508 509 510 511
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
512
    
513 514 515 516
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
517 518 519

}

520 521 522 523
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
524
    all_params = malloc(num_params * sizeof(*all_params));
525 526

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
527
        const char * anno = anno_map->annotations[i].ptr;
528 529 530 531 532
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
533 534 535 536 537 538 539
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
540
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
541 542 543 544 545

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
546
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
547 548 549
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
550
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
551
    }
552

553 554
   /* print statistics */
   if(!g_tw_mynode)
555
   {	
556
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg time %lf \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000, avg_time);
557
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
558
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
559 560
 
  }
561 562
   return;
}
563

564 565 566
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
567 568 569 570 571
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

664 665 666 667 668
   s->rank_tbl = qhash_init(dragonfly_rank_hash_compare, quickhash_64bit_hash, DFLY_HASH_TABLE_SIZE);

   if(!s->rank_tbl)
       tw_error(TW_LOC, "\n Hash table not initialized! ");

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
   s->in_send_loop = 0;

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
685
{
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
728
   for(int i=0; i < p->radix; i++)
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
748
        for(int j = 0; j < p->num_vcs; j++) {
749 750 751 752 753 754 755 756 757
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
758
//   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
759 760 761 762
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
763
       for(int i=0; i < p->num_global_channels; i++)
764 765 766 767 768 769 770 771 772 773 774 775 776
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
777 778 779
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
808 809 810 811 812 813 814 815 816 817
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
818
{
819 820 821 822 823
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

824 825 826 827
    xfer_to_nic_time = codes_local_latency(sender); 
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
828 829
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
830 831
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
832
    msg->total_size = req->msg_size;
833
    msg->sender_lp=req->src_lp;
834
    msg->sender_mn_lp = sender->gid;
835 836 837 838
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
839
    msg->dest_terminal_id = req->dest_mn_lp;
840
    msg->message_id = req->msg_id;
841 842
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
843 844
    msg->magic = terminal_magic_num; 
 
845 846
    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
847
	if(req->remote_event_size > 0)
848
	 {
849 850 851
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
852
	}
853
	if(req->self_event_size > 0)
854
	{
855 856 857
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
858 859
	}
     }
860
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
861
    tw_event_send(e_new);
862
    return xfer_to_nic_time;
863 864 865 866 867 868 869 870 871
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

872 873 874
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
875 876
		    int num_routers,
                    int total_groups)
877
{
878 879 880 881 882 883 884
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
885 886 887
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
888
  
889 890
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
891
  
892 893
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
894
  
895
  offset=(offset - 1) % (half_channel * num_routers);
896 897 898 899 900 901 902 903 904 905

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
906
#endif
907 908 909
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
910 911
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
912 913 914 915
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

916
  int dest = 0,  type = R_BUFFER;
917
  int is_terminal = 0;
918

919
  const dragonfly_param *p = s->params;
920 921 922 923 924 925 926 927 928 929 930 931 932
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

933
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
934
	
935 936 937 938 939 940 941 942 943 944 945 946 947 948
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
949
    buf_msg->vc_index = msg->saved_vc;
950 951 952 953
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
954

955 956
  tw_event_send(buf_e);
  return;
957 958
}

959
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
960
{
961 962 963
   term_rev_ecount++;
   term_ecount--;

964 965
   tw_rand_reverse_unif(lp->rng);

966 967 968
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
969

970
   if(!num_chunks)
971
       num_chunks = 1;
972

973 974 975 976 977 978 979 980 981 982 983
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
        tw_rand_reverse_unif(lp->rng);
        s->in_send_loop = 0;
    }
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
984 985 986 987
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
988

989
/* generates packet at the current dragonfly compute node */
990 991 992
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
993

994
  tw_stime ts;
995

996
  assert(lp->gid != msg->dest_terminal_id);
997
  const dragonfly_param *p = s->params;
998

999
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
1000
  model_net_method_idle_event(codes_local_latency(lp), 0, lp);
1001

1002 1003 1004
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size) num_chunks++;
1005 1006 1007 1008

  if(!num_chunks)
    num_chunks = 1;

1009
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
1010 1011 1012 1013 1014
  msg->travel_start_time = tw_now(lp);
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
1015

1016 1017 1018
  if(msg->packet_ID == TRACK && msg->message_id == TRACK_MSG)
      printf("\n Packet generated at terminal %d destination %d ", lp->gid, s->router_id);

1019 1020 1021 1022 1023
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
1039

1040 1041 1042 1043
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);
  }
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  if(s->in_send_loop == 0) {
    bf->c5 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    s->in_send_loop = 1;
    tw_event_send(e);
  }
1056

1057 1058 1059 1060 1061 1062 1063 1064
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
1065
	  stat->max_event_size = total_event_size;
1066

1067 1068 1069
  return;
}

1070 1071
void packet_send_rc(terminal_state * s, tw_bf * bf, terminal_message * msg,
        tw_lp * lp)
1072
{
1073 1074
      term_ecount--;
      term_rev_ecount++;
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
      if(bf->c1) {
        s->in_send_loop = 1;
        return;
      }
      
      s->terminal_available_time = msg->saved_available_time;
      tw_rand_reverse_unif(lp->rng);
      if(bf->c2) {
        codes_local_latency_reverse(lp);
      }
     
      s->packet_counter--;
      s->vc_occupancy[0] -= s->params->chunk_size;
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
      create_prepend_to_terminal_message_list(s->terminal_msgs,
          s->terminal_msgs_tail, 0, msg);
      if(bf->c3) {
        tw_rand_reverse_unif(lp->rng);
      }
      if(bf->c4) {
        s->in_send_loop = 1;
      }
    return;
}
/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  
  term_ecount++;
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
1109

1110