darshan-mpi-io.c 46.8 KB
Newer Older
1
2
3
4
5
/*
 *  (C) 2009 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

6
7
8
9
10
11
12
13
14
15
16
#define _XOPEN_SOURCE 500
#define _GNU_SOURCE /* for tdestroy() */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <limits.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
17
#include <sys/stat.h>
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#include <zlib.h>
#include <assert.h>
#include <search.h>

#include "mpi.h"
#include "darshan.h"
#include "darshan-config.h"

extern char* __progname;

/* maximum number of memory segments each process will write to the log */
#define CP_MAX_MEM_SEGMENTS 8

#define CP_DATATYPE_INC(__file, __datatype) do {\
    int num_integers, num_addresses, num_datatypes, combiner, ret; \
    ret = MPI_Type_get_envelope(__datatype, &num_integers, &num_addresses, \
        &num_datatypes, &combiner); \
    if(ret == MPI_SUCCESS) { \
        switch(combiner) { \
            case MPI_COMBINER_NAMED:\
                CP_INC(__file,CP_COMBINER_NAMED,1); break; \
            case MPI_COMBINER_DUP:\
                CP_INC(__file,CP_COMBINER_DUP,1); break; \
            case MPI_COMBINER_CONTIGUOUS:\
                CP_INC(__file,CP_COMBINER_CONTIGUOUS,1); break; \
            case MPI_COMBINER_VECTOR:\
                CP_INC(__file,CP_COMBINER_VECTOR,1); break; \
            case MPI_COMBINER_HVECTOR_INTEGER:\
                CP_INC(__file,CP_COMBINER_HVECTOR_INTEGER,1); break; \
            case MPI_COMBINER_HVECTOR:\
                CP_INC(__file,CP_COMBINER_HVECTOR,1); break; \
            case MPI_COMBINER_INDEXED:\
                CP_INC(__file,CP_COMBINER_INDEXED,1); break; \
            case MPI_COMBINER_HINDEXED_INTEGER:\
                CP_INC(__file,CP_COMBINER_HINDEXED_INTEGER,1); break; \
            case MPI_COMBINER_HINDEXED:\
                CP_INC(__file,CP_COMBINER_HINDEXED,1); break; \
            case MPI_COMBINER_INDEXED_BLOCK:\
                CP_INC(__file,CP_COMBINER_INDEXED_BLOCK,1); break; \
            case MPI_COMBINER_STRUCT_INTEGER:\
                CP_INC(__file,CP_COMBINER_STRUCT_INTEGER,1); break; \
            case MPI_COMBINER_STRUCT:\
                CP_INC(__file,CP_COMBINER_STRUCT,1); break; \
            case MPI_COMBINER_SUBARRAY:\
                CP_INC(__file,CP_COMBINER_SUBARRAY,1); break; \
            case MPI_COMBINER_DARRAY:\
                CP_INC(__file,CP_COMBINER_DARRAY,1); break; \
            case MPI_COMBINER_F90_REAL:\
                CP_INC(__file,CP_COMBINER_F90_REAL,1); break; \
            case MPI_COMBINER_F90_COMPLEX:\
                CP_INC(__file,CP_COMBINER_F90_COMPLEX,1); break; \
            case MPI_COMBINER_F90_INTEGER:\
                CP_INC(__file,CP_COMBINER_F90_INTEGER,1); break; \
            case MPI_COMBINER_RESIZED:\
                CP_INC(__file,CP_COMBINER_RESIZED,1); break; \
        } \
    } \
} while(0)

#define CP_RECORD_MPI_WRITE(__ret, __fh, __count, __datatype, __counter, __tm1, __tm2) do { \
    struct darshan_file_runtime* file; \
    int size = 0; \
    MPI_Aint extent = 0; \
    if(__ret != MPI_SUCCESS) break; \
    file = darshan_file_by_fh(__fh); \
    if(!file) break; \
    MPI_Type_size(__datatype, &size);  \
    size = size * __count; \
    MPI_Type_extent(__datatype, &extent); \
    CP_BUCKET_INC(file, CP_SIZE_WRITE_AGG_0_100, size); \
    CP_BUCKET_INC(file, CP_EXTENT_WRITE_0_100, extent); \
    CP_INC(file, __counter, 1); \
    CP_DATATYPE_INC(file, __datatype); \
    CP_F_INC(file, CP_F_MPI_WRITE_TIME, (__tm2-__tm1)); \
    if(CP_F_VALUE(file, CP_F_WRITE_START_TIMESTAMP) == 0) \
        CP_F_SET(file, CP_F_WRITE_START_TIMESTAMP, __tm1); \
    CP_F_SET(file, CP_F_WRITE_END_TIMESTAMP, __tm2); \
} while(0)

#define CP_RECORD_MPI_READ(__ret, __fh, __count, __datatype, __counter, __tm1, __tm2) do { \
    struct darshan_file_runtime* file; \
    int size = 0; \
    MPI_Aint extent = 0; \
    if(__ret != MPI_SUCCESS) break; \
    file = darshan_file_by_fh(__fh); \
    if(!file) break; \
    MPI_Type_size(__datatype, &size);  \
    size = size * __count; \
    MPI_Type_extent(__datatype, &extent); \
    CP_BUCKET_INC(file, CP_SIZE_READ_AGG_0_100, size); \
    CP_BUCKET_INC(file, CP_EXTENT_READ_0_100, extent); \
    CP_INC(file, __counter, 1); \
    CP_DATATYPE_INC(file, __datatype); \
    CP_F_INC(file, CP_F_MPI_READ_TIME, (__tm2-__tm1)); \
    if(CP_F_VALUE(file, CP_F_READ_START_TIMESTAMP) == 0) \
        CP_F_SET(file, CP_F_READ_START_TIMESTAMP, __tm1); \
    CP_F_SET(file, CP_F_READ_END_TIMESTAMP, __tm2); \
} while(0)

static struct darshan_file_runtime* darshan_file_by_fh(MPI_File fh);
static void cp_log_construct_indices(struct darshan_job_runtime* final_job, int rank, int* inout_count, int* lengths, void** pointers);
static int cp_log_write(struct darshan_job_runtime* final_job, int rank, 
120
    char* logfile_name, int count, int* lengths, void** pointers, double start_log_time);
121
static int cp_log_reduction(struct darshan_job_runtime* final_job, int rank, 
122
    char* logfile_name, MPI_Offset* next_offset);
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
static void darshan_file_reduce(void* infile_v, 
    void* inoutfile_v, int *len, 
    MPI_Datatype *datatype);
static int cp_log_compress(struct darshan_job_runtime* final_job,
    int rank, int* inout_count, int* lengths, void** pointers);
static int file_compare(const void* a, const void* b);

int MPI_Init(int *argc, char ***argv)
{
    int ret;

    ret = PMPI_Init(argc, argv);
    if(ret != MPI_SUCCESS)
    {
        return(ret);
    }

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    darshan_mpi_initialize(argc, argv);

    return(ret);
}

int MPI_Init_thread (int *argc, char ***argv, int required, int *provided)
{
    int ret;

    ret = PMPI_Init_thread(argc, argv, required, provided);
    if (ret != MPI_SUCCESS)
    {
        return(ret);
    }

    darshan_mpi_initialize(argc, argv);

    return(ret);
}

void darshan_mpi_initialize(int *argc, char ***argv)
{
    int nprocs;
    int rank;

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    CP_LOCK();
    if(argc && argv)
    {
        darshan_initialize(*argc, *argv, nprocs, rank);
    }
    else
    {
        /* we don't see argc and argv here in fortran */
        darshan_initialize(0, NULL, nprocs, rank);
    }

    CP_UNLOCK();

181
    return;
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
}

void darshan_shutdown(int timing_flag)
{
    int rank;
    char* logfile_name;
    struct darshan_job_runtime* final_job;
    double start_log_time = 0;
    int flags;
    int all_ret = 0;
    int local_ret = 0;
    MPI_Offset next_offset = 0;
    char* jobid_str;
    int jobid;
    int index_count = 0;
    int lengths[CP_MAX_MEM_SEGMENTS];
    void* pointers[CP_MAX_MEM_SEGMENTS];
    int ret;
    double red1=0, red2=0, gz1=0, gz2=0, write1=0, write2=0, tm_end=0;
    int nprocs;

    CP_LOCK();
    if(!darshan_global_job)
    {
        CP_UNLOCK();
    }
    /* disable further tracing while hanging onto the data so that we can
     * write it out
     */
    final_job = darshan_global_job;
    darshan_global_job = NULL;
    flags = final_job->flags;
    CP_UNLOCK();

216
    start_log_time = MPI_Wtime();
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    /* figure out which access sizes to log */
    darshan_walk_file_accesses(final_job);

    /* if the records have been condensed, then zero out fields that are no
     * longer valid for safety 
     */
    if(final_job->flags & CP_FLAG_CONDENSED && final_job->file_count)
    {
        CP_SET(&final_job->file_runtime_array[0], CP_MODE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_CONSEC_READS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_CONSEC_WRITES, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_SEQ_READS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_SEQ_WRITES, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE1_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE2_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE3_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE4_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE1_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE2_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE3_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE4_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS1_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS2_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS3_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS4_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS1_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS2_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS3_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS4_COUNT, 0);
        
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_OPEN_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_CLOSE_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_READ_START_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_READ_END_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_WRITE_START_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_WRITE_END_TIMESTAMP, 0);
    }

    logfile_name = malloc(PATH_MAX);
    if(!logfile_name)
    {
        darshan_finalize(final_job);
        return;
    }

263
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    /* construct log file name */
    if(rank == 0)
    {
        char cuser[L_cuserid] = {0};
        struct tm* my_tm;

        /* find a job id */
        jobid_str = getenv("COBALT_JOBID");
        if(jobid_str)
        {
            /* in cobalt we can find it in env var */
            ret = sscanf(jobid_str, "%d", &jobid);
        }
        if(!jobid_str || ret != 1)
        {
            /* use pid as fall back */
            jobid = getpid();
        }

        /* break out time into something human readable */
        my_tm = localtime(&final_job->log_job.start_time);

        /* note: getpwuid() causes link errors for static binaries */
        cuserid(cuser);

        ret = snprintf(logfile_name, PATH_MAX, 
291
            "%s/%d/%d/%d/%s_%s_id%d_%d-%d-%d.darshan_partial",
292
            __CP_LOG_PATH, (my_tm->tm_year+1900), 
293
            (my_tm->tm_mon+1), my_tm->tm_mday, 
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            cuser, __progname, jobid,
            (my_tm->tm_mon+1), 
            my_tm->tm_mday, 
            (my_tm->tm_hour*60*60 + my_tm->tm_min*60 + my_tm->tm_sec));
        if(ret == (PATH_MAX-1))
        {
            /* file name was too big; squish it down */
            snprintf(logfile_name, PATH_MAX,
                "%s/id%d.darshan_partial",
                __CP_LOG_PATH, jobid);
        }
    }

    /* broadcast log file name */
308
    MPI_Bcast(logfile_name, PATH_MAX, MPI_CHAR, 0, MPI_COMM_WORLD);
309
310
311
312
313

    final_job->log_job.end_time = time(NULL);

    /* reduce records for shared files */
    if(timing_flag)
314
        red1 = MPI_Wtime();
315
316
    local_ret = cp_log_reduction(final_job, rank, logfile_name, 
        &next_offset);
317
    if(timing_flag)
318
319
        red2 = MPI_Wtime();
    MPI_Allreduce(&local_ret, &all_ret, 1, MPI_INT, MPI_LOR, 
320
321
322
323
324
325
326
327
328
329
330
331
332
        MPI_COMM_WORLD);

    if(all_ret == 0)
    {
        /* collect data to write from local process */
        cp_log_construct_indices(final_job, rank, &index_count, lengths, 
            pointers);
    }

    if(all_ret == 0)
    {
        /* compress data */
        if(timing_flag)
333
            gz1 = MPI_Wtime();
334
335
336
        local_ret = cp_log_compress(final_job, rank, &index_count, 
            lengths, pointers);
        if(timing_flag)
337
338
            gz2 = MPI_Wtime();
        MPI_Allreduce(&local_ret, &all_ret, 1, MPI_INT, MPI_LOR, 
339
340
341
342
343
344
345
            MPI_COMM_WORLD);
    }

    if(all_ret == 0)
    {
        /* actually write out log file */
        if(timing_flag)
346
            write1 = MPI_Wtime();
347
        local_ret = cp_log_write(final_job, rank, logfile_name, 
348
349
            index_count, lengths, pointers, start_log_time);
        if(timing_flag)
350
351
            write2 = MPI_Wtime();
        MPI_Allreduce(&local_ret, &all_ret, 1, MPI_INT, MPI_LOR, 
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            MPI_COMM_WORLD);
    }

    /* if any process failed to write log, then delete the whole file so we
     * don't leave corrupted results
     */
    if(all_ret != 0 && rank == 0)
    {
        unlink(logfile_name);
    }

    free(logfile_name);
    darshan_finalize(final_job);
    
    if(timing_flag)
    {
        double red_tm, red_slowest;
        double gz_tm, gz_slowest;
        double write_tm, write_slowest;
        double all_tm, all_slowest;
        
373
        tm_end = MPI_Wtime();
374
375
376
377
378
379

        red_tm = red2-red1;
        gz_tm = gz2-gz1;
        write_tm = write2-write1;
        all_tm = tm_end-start_log_time;

380
        MPI_Allreduce(&red_tm, &red_slowest, 1,
381
            MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
382
        MPI_Allreduce(&gz_tm, &gz_slowest, 1,
383
            MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
384
        MPI_Allreduce(&write_tm, &write_slowest, 1,
385
            MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
386
        MPI_Allreduce(&all_tm, &all_slowest, 1,
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);

        if(rank == 0)
        {
            MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
            printf("#<op>\t<nprocs>\t<time>\n");
            printf("reduce\t%d\t%f\n", nprocs, red_slowest);
            printf("gzip\t%d\t%f\n", nprocs, gz_slowest);
            printf("write\t%d\t%f\n", nprocs, write_slowest);
            printf("all\t%d\t%f\n", nprocs, all_slowest);
        }
    }

    return;
}

int MPI_Finalize(void)
{
    int ret;

    darshan_shutdown(0);

    ret = PMPI_Finalize();
    return(ret);
}

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info, MPI_File *fh) 
{
    int ret;
    struct darshan_file_runtime* file;
    char* tmp;
    int comm_size;
    int hash_index;
    uint64_t tmp_hash;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_open(comm, filename, amode, info, fh);
    tm2 = darshan_wtime();

    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();

        /* use ROMIO approach to strip prefix if present */
        /* strip off prefix if there is one, but only skip prefixes
         * if they are greater than length one to allow for windows
         * drive specifications (e.g. c:\...) 
         */
        tmp = strchr(filename, ':');
        if (tmp > filename + 1) {
            filename = tmp + 1;
        }

        file = darshan_file_by_name(filename);
        /* TODO: handle the case of multiple concurrent opens */
        if(file && (file->fh == MPI_FILE_NULL))
        {
            file->fh = *fh;
            CP_SET(file, CP_MODE, amode);
            CP_F_INC(file, CP_F_MPI_META_TIME, (tm2-tm1));
            if(CP_F_VALUE(file, CP_F_OPEN_TIMESTAMP) == 0)
                CP_F_SET(file, CP_F_OPEN_TIMESTAMP, MPI_Wtime());
450
            MPI_Comm_size(comm, &comm_size);
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
            if(comm_size == 1)
            {
                CP_INC(file, CP_INDEP_OPENS, 1);
            }
            else
            {
                CP_INC(file, CP_COLL_OPENS, 1);
            }
            if(info != MPI_INFO_NULL)
            {
                CP_INC(file, CP_HINTS, 1);
            }
            tmp_hash = hash((void*)fh, sizeof(*fh), 0);
            hash_index = tmp_hash & CP_HASH_MASK;
            file->fh_prev = NULL;
            file->fh_next = darshan_global_job->fh_table[hash_index];
            if(file->fh_next)
                file->fh_next->fh_prev = file;
            darshan_global_job->fh_table[hash_index] = file;
        }
        CP_UNLOCK();
    }

    return(ret);
}

int MPI_File_close(MPI_File *fh) 
{
    int hash_index;
    uint64_t tmp_hash;
    struct darshan_file_runtime* file;
    MPI_File tmp_fh = *fh;
    double tm1, tm2;
    int ret;
    
    tm1 = darshan_wtime();
    ret = PMPI_File_close(fh);
    tm2 = darshan_wtime();

    CP_LOCK();
    file = darshan_file_by_fh(tmp_fh);
    if(file)
    {
        file->fh = MPI_FILE_NULL;
        CP_F_SET(file, CP_F_CLOSE_TIMESTAMP, MPI_Wtime());
        CP_F_INC(file, CP_F_MPI_META_TIME, (tm2-tm1));
        if(file->fh_prev == NULL)
        {
            /* head of fh hash table list */
            tmp_hash = hash((void*)&tmp_fh, sizeof(tmp_fh), 0);
            hash_index = tmp_hash & CP_HASH_MASK;
            darshan_global_job->fh_table[hash_index] = file->fh_next;
            if(file->fh_next)
                file->fh_next->fh_prev = NULL;
        }
        else
        {
            if(file->fh_prev)
                file->fh_prev->fh_next = file->fh_next;
            if(file->fh_next)
                file->fh_next->fh_prev = file->fh_prev;
        }
        file->fh_prev = NULL;
        file->fh_next = NULL;
        darshan_global_job->darshan_mru_file = file; /* in case we open it again, or hit posix calls */
    }
    CP_UNLOCK();

    return(ret);
}

int MPI_File_sync(MPI_File fh)
{
    int ret;
    struct darshan_file_runtime* file;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_sync(fh);
    tm2 = darshan_wtime();
    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();
        file = darshan_file_by_fh(fh);
        if(file)
        {
            CP_F_INC(file, CP_F_MPI_META_TIME, (tm2-tm1));
            CP_INC(file, CP_SYNCS, 1);
        }
        CP_UNLOCK();
    }

    return(ret);
}


int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, 
    MPI_Datatype filetype, char *datarep, MPI_Info info)
{
    int ret;
    struct darshan_file_runtime* file;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_set_view(fh, disp, etype, filetype, datarep, info);
    tm2 = darshan_wtime();
    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();
        file = darshan_file_by_fh(fh);
        if(file)
        {
            CP_INC(file, CP_VIEWS, 1);
            if(info != MPI_INFO_NULL)
            {
                CP_F_INC(file, CP_F_MPI_META_TIME, (tm2-tm1));
                CP_INC(file, CP_HINTS, 1);
            }
            CP_DATATYPE_INC(file, filetype);
        }
        CP_UNLOCK();
    }

    return(ret);
}

int MPI_File_read(MPI_File fh, void *buf, int count, 
    MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf,
    int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_at(fh, offset, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_at_all(fh, offset, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_all(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_all(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_shared(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_shared(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_ordered(MPI_File fh, void * buf, int count, 
    MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_ordered(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_at_all_begin(fh, offset, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_all_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_all_begin(fh, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_ordered_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_read_ordered_begin(fh, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPIO_Request *request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iread_at(fh, offset, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iread(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPIO_Request * request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iread(fh, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iread_shared(MPI_File fh, void * buf, int count,
    MPI_Datatype datatype, MPIO_Request * request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iread_shared(fh, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}


int MPI_File_write(MPI_File fh, void *buf, int count, 
    MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf,
    int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_at(fh, offset, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_at_all(fh, offset, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_all(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_all(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_shared(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_shared(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_ordered(MPI_File fh, void * buf, int count, 
    MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_ordered(fh, buf, count, datatype, status);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_at_all_begin(fh, offset, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_all_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_all_begin(fh, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_write_ordered_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_write_ordered_begin(fh, buf, count, datatype);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPIO_Request *request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iwrite_at(fh, offset, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iwrite(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPIO_Request * request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iwrite(fh, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iwrite_shared(MPI_File fh, void * buf, int count,
    MPI_Datatype datatype, MPIO_Request * request)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
    ret = PMPI_File_iwrite_shared(fh, buf, count, datatype, request);
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

static struct darshan_file_runtime* darshan_file_by_fh(MPI_File fh)
{
    struct darshan_file_runtime* tmp_file;
    uint64_t tmp_hash = 0;
    int hash_index;

    if(!darshan_global_job)
        return(NULL);

    /* if we have already condensed the data, then just hand the first file
     * back
     */
    if(darshan_global_job->flags & CP_FLAG_CONDENSED)
    {
        return(&darshan_global_job->file_runtime_array[0]);
    }

    /* check most recently used */
    if(darshan_global_job->darshan_mru_file && darshan_global_job->darshan_mru_file->fh == fh)
    {
        return(darshan_global_job->darshan_mru_file);
    }

    tmp_hash = hash((void*)(&fh), sizeof(fh), 0);

    /* search hash table */
    hash_index = tmp_hash & CP_HASH_MASK;
    tmp_file = darshan_global_job->fh_table[hash_index];
    while(tmp_file)
    {
        if(tmp_file->fh == fh)
        {
            darshan_global_job->darshan_mru_file = tmp_file;
            return(tmp_file);
        }
        tmp_file = tmp_file->fh_next;
    }

    return(NULL);
}

/* cp_log_reduction()
 *
 * Identify shared files and reduce them to one log entry
 *
 * returns 0 on success, -1 on failure
 */
static int cp_log_reduction(struct darshan_job_runtime* final_job, int rank, 
976
    char* logfile_name, MPI_Offset* next_offset)
977
978
979
980
981
982
983
984
985
986
987
988
989
990
{
    /* TODO: these need to be allocated differently now, too big */
    uint64_t hash_array[CP_MAX_FILES] = {0};
    int mask_array[CP_MAX_FILES] = {0};
    int all_mask_array[CP_MAX_FILES] = {0};
    int ret;
    int i;
    int j;
    MPI_Op reduce_op;
    MPI_Datatype rtype;
    struct darshan_file* tmp_array = NULL;
    int shared_count = 0;

    /* register a reduction operation */
991
    ret = MPI_Op_create(darshan_file_reduce, 1, &reduce_op); 
992
993
994
995
996
997
998
999
    if(ret != 0)
    {
        return(-1);
    }

    /* construct a datatype for a file record.  This is serving no purpose
     * except to make sure we can do a reduction on proper boundaries
     */
1000
1001
    MPI_Type_contiguous(sizeof(struct darshan_file), MPI_BYTE, &rtype); 
    MPI_Type_commit(&rtype); 
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

    /* gather list of files that root process has opened */
    if(rank == 0)
    {
        for(i=0; i<final_job->file_count; i++)
        {
            hash_array[i] = final_job->file_array[i].hash;
        }
    }

    /* broadcast list of files to all other processes */
1013
    ret = MPI_Bcast(hash_array, (CP_MAX_FILES * sizeof(uint64_t)), 
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        MPI_BYTE, 0, MPI_COMM_WORLD);
    if(ret != 0)
    {
        return(-1);
    }

    /* everyone looks to see if they have also opened that same file */
    for(i=0; (i<CP_MAX_FILES && hash_array[i] != 0); i++)
    {
        for(j=0; j<final_job->file_count; j++)
        {
            if(hash_array[i] && final_job->file_array[j].hash == hash_array[i])
            {
                /* we opened that file too */
                mask_array[i] = 1;
                break;
            }
        }
    }

    /* now allreduce so that everyone agrees on which files are shared */
1035
    ret = MPI_Allreduce(mask_array, all_mask_array, CP_MAX_FILES, MPI_INT, 
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        MPI_LAND, MPI_COMM_WORLD);
    if(ret != 0)
    {
        return(-1);
    }

    /* walk through mask array counting entries and marking corresponding
     * files with a rank of -1
     */
    for(i=0; i<CP_MAX_FILES; i++)
    {
        if(all_mask_array[i])
        {
            shared_count++;
            for(j=0; j<final_job->file_count; j++)
            {
                if(final_job->file_array[j].hash == hash_array[i])
                {
                    final_job->file_array[j].rank = -1;
                    break;
                }
            }
        }
    }

    if(shared_count)
    {
        if(rank == 0)
        {
            /* root proc needs to allocate memory to store reduction */
            tmp_array = malloc(shared_count*sizeof(struct darshan_file));
            if(!tmp_array)
            {
                /* TODO: think more about how to handle errors like this */
                return(-1);
            }
        }

        /* sort the array of files descending by rank so that we get all of the 
         * shared files (marked by rank -1) in a contiguous portion at end 
         * of the array
         */
        qsort(final_job->file_array, final_job->file_count, 
            sizeof(struct darshan_file), file_compare);

1081
        ret = MPI_Reduce(
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
            &final_job->file_array[final_job->file_count-shared_count], 
            tmp_array, shared_count, rtype, reduce_op, 0, MPI_COMM_WORLD);
        if(ret != 0)
        {
            return(-1);
        }

        if(rank == 0)
        {
            /* root replaces local files with shared ones */
            memcpy(&final_job->file_array[final_job->file_count-shared_count],
                tmp_array, shared_count*sizeof(struct darshan_file));
            free(tmp_array);
            tmp_array = NULL;
        }
        else
        {
            /* everyone else simply discards those file records */
            final_job->file_count -= shared_count;
        }
    }
    
    return(0);
}

/* TODO: should we use more of the CP macros here? */
static void darshan_file_reduce(void* infile_v, 
    void* inoutfile_v, int *len, 
    MPI_Datatype *datatype)
{
    struct darshan_file tmp_file;
    struct darshan_file* infile = infile_v;
    struct darshan_file* inoutfile = inoutfile_v;
    struct darshan_file_runtime tmp_runtime;
    int i;
    int j;
    int k;

    for(i=0; i<*len; i++)
    {
        memset(&tmp_file, 0, sizeof(tmp_file));

        tmp_file.hash = infile->hash;
        tmp_file.rank = -1; /* indicates shared across all procs */

        /* sum */
        for(j=CP_INDEP_OPENS; j<=CP_VIEWS; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* pick one */
        tmp_file.counters[CP_MODE] = infile->counters[CP_MODE];


        /* sum */
        for(j=CP_BYTES_READ; j<=CP_BYTES_WRITTEN; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* max */
        for(j=CP_MAX_BYTE_READ; j<=CP_MAX_BYTE_WRITTEN; j++)
        {
            tmp_file.counters[j] = (
                (infile->counters[j] > inoutfile->counters[j]) ? 
                infile->counters[j] :
                inoutfile->counters[j]);
        }

        /* sum */
        for(j=CP_CONSEC_READS; j<=CP_MEM_NOT_ALIGNED; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* pick one */
        tmp_file.counters[CP_MEM_ALIGNMENT] = infile->counters[CP_MEM_ALIGNMENT];
        /* sum */
        for(j=CP_FILE_NOT_ALIGNED; j<=CP_FILE_NOT_ALIGNED; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* pick one */
        tmp_file.counters[CP_FILE_ALIGNMENT] = infile->counters[CP_FILE_ALIGNMENT];
        
1173
1174
        /* skip CP_MAX_*_TIME_SIZE; handled in floating point section */

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
        /* sum */
        for(j=CP_SIZE_READ_0_100; j<=CP_EXTENT_WRITE_1G_PLUS; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* pick the 4 most common strides out of the 8 we have to chose from */

        /* first collapse any duplicates */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            for(k=CP_STRIDE1_STRIDE; k<=CP_STRIDE4_STRIDE; k++)
            {
                if(infile->counters[j] == inoutfile->counters[k])
                {
                    infile->counters[j+4] += inoutfile->counters[k+4];
                    inoutfile->counters[k] = 0;
                    inoutfile->counters[k+4] = 0;
                }
            }
        }

        /* placeholder so we can re-use macros */
        tmp_runtime.log_file = &tmp_file;
        /* first set */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, infile->counters[j],
                infile->counters[j+4], 1, CP_STRIDE1_STRIDE, CP_STRIDE1_COUNT);
        }
        /* second set */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, inoutfile->counters[j],
                inoutfile->counters[j+4], 1, CP_STRIDE1_STRIDE, CP_STRIDE1_COUNT);
        }

        /* TODO: subroutine so we don't duplicate so much */
        /* same for access counts */

        /* first collapse any duplicates */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            for(k=CP_ACCESS1_ACCESS; k<=CP_ACCESS4_ACCESS; k++)
            {
                if(infile->counters[j] == inoutfile->counters[k])
                {
                    infile->counters[j+4] += inoutfile->counters[k+4];
                    inoutfile->counters[k] = 0;
                    inoutfile->counters[k+4] = 0;
                }
            }
        }

        /* placeholder so we can re-use macros */
        tmp_runtime.log_file = &tmp_file;
        /* first set */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, infile->counters[j],
                infile->counters[j+4], 1, CP_ACCESS1_ACCESS, CP_ACCESS1_COUNT);
        }
        /* second set */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, inoutfile->counters[j],
                inoutfile->counters[j+4], 1, CP_ACCESS1_ACCESS, CP_ACCESS1_COUNT);
        }

        /* min */
        for(j=CP_F_OPEN_TIMESTAMP; j<=CP_F_WRITE_START_TIMESTAMP; j++)
        {
            if(infile->fcounters[j] > inoutfile->fcounters[j])
                tmp_file.fcounters[j] = inoutfile->fcounters[j];
            else
                tmp_file.fcounters[j] = infile->fcounters[j];
        }

        /* max */
        for(j=CP_F_CLOSE_TIMESTAMP; j<=CP_F_WRITE_END_TIMESTAMP; j++)
        {
            if(infile->fcounters[j] > inoutfile->fcounters[j])
                tmp_file.fcounters[j] = infile->fcounters[j];
            else
                tmp_file.fcounters[j] = inoutfile->fcounters[j];
        }

        /* sum */
        for(j=CP_F_POSIX_READ_TIME; j<=CP_F_MPI_WRITE_TIME; j++)
        {
            tmp_file.fcounters[j] = infile->fcounters[j] + 
                inoutfile->fcounters[j];
        }

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        /* max (special case) */
        if(infile->fcounters[CP_F_MAX_WRITE_TIME] > 
            inoutfile->fcounters[CP_F_MAX_WRITE_TIME])
        {
            tmp_file.fcounters[CP_F_MAX_WRITE_TIME] = 
                infile->fcounters[CP_F_MAX_WRITE_TIME];
            tmp_file.counters[CP_MAX_WRITE_TIME_SIZE] = 
                infile->counters[CP_MAX_WRITE_TIME_SIZE];
        }
        else
        {
            tmp_file.fcounters[CP_F_MAX_WRITE_TIME] = 
                inoutfile->fcounters[CP_F_MAX_WRITE_TIME];
            tmp_file.counters[CP_MAX_WRITE_TIME_SIZE] = 
                inoutfile->counters[CP_MAX_WRITE_TIME_SIZE];
        }

        if(infile->fcounters[CP_F_MAX_READ_TIME] > 
            inoutfile->fcounters[CP_F_MAX_READ_TIME])
        {
            tmp_file.fcounters[CP_F_MAX_READ_TIME] = 
                infile->fcounters[CP_F_MAX_READ_TIME];
            tmp_file.counters[CP_MAX_READ_TIME_SIZE] = 
                infile->counters[CP_MAX_READ_TIME_SIZE];
        }
        else
        {
            tmp_file.fcounters[CP_F_MAX_READ_TIME] = 
                inoutfile->fcounters[CP_F_MAX_READ_TIME];
            tmp_file.counters[CP_MAX_READ_TIME_SIZE] = 
                inoutfile->counters[CP_MAX_READ_TIME_SIZE];
        }

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        /* pick one name suffix */
        strcpy(tmp_file.name_suffix, infile->name_suffix);

        *inoutfile = tmp_file;
        inoutfile++;
        infile++;
    }
    
    return;
}
/* cp_log_construct_indices()
 *
 * create memory datatypes to describe the log data to write out
 */
static void cp_log_construct_indices(struct darshan_job_runtime* final_job, 
    int rank, int* inout_count, int* lengths, void** pointers)
{
    *inout_count = 0;

    if(rank == 0)
    {
        /* root process is responsible for writing header */
        lengths[*inout_count] = sizeof(final_job->log_job);
        pointers[*inout_count] = &final_job->log_job;
        (*inout_count)++;

        /* also string containing exe command line */
        lengths[*inout_count] = CP_EXE_LEN + 1; 
        pointers[*inout_count] = final_job->exe;
        (*inout_count)++;
    }

    /* everyone adds their own file records, if present */
    if(final_job->file_count > 0)
    {
        lengths[*inout_count] = final_job->file_count*CP_FILE_RECORD_SIZE;
        pointers[*inout_count] = final_job->file_array;
        (*inout_count)++;
    }
    
    return;
}

/* cp_log_write()
 *
 * actually write log information to disk
 */
static int cp_log_write(struct darshan_job_runtime* final_job, int rank, 
1351
    char* logfile_name, int count, int* lengths, void** pointers, double start_log_time)
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
{
    int ret;
    MPI_File fh;
    MPI_Status status;
    MPI_Datatype mtype;
    int my_total = 0;
    long my_total_long;
    long offset;
    int i;
    MPI_Aint displacements[CP_MAX_MEM_SEGMENTS];
    void* buf;
    int failed_write = 0;

    /* construct data type to describe everything we are writing */
    /* NOTE: there may be a bug in MPI-IO when using MPI_BOTTOM with an
     * hindexed data type.  We will instead use the first pointer as a base
     * and adjust the displacements relative to it.
     */
    buf = pointers[0];
    for(i=0; i<count; i++)
    {
        displacements[i] = (MPI_Aint)(pointers[i] - buf);
    }
1375
1376
    MPI_Type_hindexed(count, lengths, displacements, MPI_BYTE, &mtype);
    MPI_Type_commit(&mtype); 
1377
1378
1379
1380
1381

    ret = PMPI_File_open(MPI_COMM_WORLD, logfile_name, MPI_MODE_CREATE |
        MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
    if(ret != MPI_SUCCESS)
    {
1382
        /* TODO: keep this print or not? */
1383
        fprintf(stderr, "darshan library warning: unable to open log file %s\n", logfile_name);
1384
        MPI_Type_free(&mtype);
1385
1386
1387
1388
1389
1390
        return(-1);
    }
   
    PMPI_File_set_size(fh, 0);

    /* figure out where everyone is writing */
1391
    MPI_Type_size(mtype, &my_total);
1392
    my_total_long = my_total;
1393
    MPI_Scan(&my_total_long, &offset, 1, MPI_LONG, MPI_SUM, MPI_COMM_WORLD); 
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    /* scan is inclusive; subtract local size back out */
    offset -= my_total_long;

    /* collectively write out file records from all processes */
    ret = PMPI_File_write_at_all(fh, offset, buf, 
        1, mtype, &status);
    if(ret != MPI_SUCCESS)
    {
        failed_write = 1;
    }

    PMPI_File_close(&fh);

    /* rename from *.darshan_partial to *-<logwritetime>.darshan.gz */
    if(rank == 0)
    {
        char* mod_index;
        double end_log_time;
        char* new_logfile_name;

        new_logfile_name = malloc(PATH_MAX);
        if(new_logfile_name)
        {
            new_logfile_name[0] = '\0';
1418
            end_log_time = MPI_Wtime();
1419
1420
1421
1422
            strcat(new_logfile_name, logfile_name);
            mod_index = strstr(new_logfile_name, ".darshan_partial");
            sprintf(mod_index, "_%d.darshan.gz", (int)(end_log_time-start_log_time+1));
            rename(logfile_name, new_logfile_name);
1423
1424
            /* set permissions on log file */
            chmod(new_logfile_name, (S_IRUSR)); 
1425
1426
1427
1428
            free(new_logfile_name);
        }
    }

1429
    MPI_Type_free(&mtype);
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613

    if(failed_write)
    {
        return(-1);
    }
    return(0);
}

/* cp_log_compress()
 *
 * gzip memory buffers to write to log file.  Modifies the count, lengths,
 * and pointers to reference new buffer (or buffers)
 *
 * returns 0 on success, -1 on error
 */
/* TODO: pick settings for compression (memory, level, etc.) */
static int cp_log_compress(struct darshan_job_runtime* final_job,
    int rank, int* inout_count, int* lengths, void** pointers)
{
    int ret = 0;
    z_stream tmp_stream;
    int total_target = 0;
    int i;
    int no_data_flag = 1;

    /* do we actually have anything to write? */
    for(i=0; i<*inout_count; i++)
    {
        if(lengths[i])
        {
            no_data_flag = 0;
            break;
        }
    }

    if(no_data_flag)
    {
        /* nothing to compress */
        *inout_count = 0;
        return(0);
    }

    memset(&tmp_stream, 0, sizeof(tmp_stream));
    tmp_stream.zalloc = Z_NULL;
    tmp_stream.zfree = Z_NULL;
    tmp_stream.opaque = Z_NULL;

    ret = deflateInit2(&tmp_stream, Z_DEFAULT_COMPRESSION, Z_DEFLATED,
        31, 8, Z_DEFAULT_STRATEGY);
    if(ret != Z_OK)
    {
        return(-1);
    }

    tmp_stream.next_out = (void*)final_job->comp_buf;
    tmp_stream.avail_out = CP_COMP_BUF_SIZE;

    /* loop through all pointers to be compressed */
    for(i=0; i<*inout_count; i++)
    {
        total_target += lengths[i];
        tmp_stream.next_in = pointers[i];
        tmp_stream.avail_in = lengths[i];
        /* while we have not finished consuming all of the data available to
         * this point in the loop
         */
        while(tmp_stream.total_in < total_target)
        {
            if(tmp_stream.avail_out == 0)
            {
                /* We ran out of buffer space for compression.  In theory,
                 * we could start using some of the file_array buffer space
                 * without having to malloc again.  In practice, this case 
                 * is going to be practically impossible to hit.
                 */
                deflateEnd(&tmp_stream);
                return(-1);
            }

            /* compress data */
            ret = deflate(&tmp_stream, Z_NO_FLUSH);
            if(ret != Z_OK)
            {
                deflateEnd(&tmp_stream);
                return(-1);
            }
        }
    }
    
    /* flush compression and end */
    ret = deflate(&tmp_stream, Z_FINISH);
    if(ret != Z_STREAM_END)
    {
        deflateEnd(&tmp_stream);
        return(-1);
    }
    deflateEnd(&tmp_stream);

    /* substitute our new buffer */
    pointers[0] = final_job->comp_buf;
    lengths[0] = tmp_stream.total_out;
    *inout_count = 1;

    return(0);
}

static struct darshan_file_runtime* walker_file = NULL;
static int walker_validx;
static int walker_cntidx;

static void cp_access_walker(const void* nodep, const VISIT which, const int depth)
{
    struct cp_access_counter* counter;

    switch (which)
    {
        case postorder:
        case leaf:
            counter = *(struct cp_access_counter**)nodep;
            //printf("   type %d size: %lld, freq: %d\n", walker_validx, counter->size, counter->freq);
            CP_COUNTER_INC(walker_file, counter->size, counter->freq, 1, walker_validx, walker_cntidx);
        default:
            break;
    }

    return;
};

/* darshan_walk_file_accesses()
 *
 * goes through runtime collections of accesses sizes and chooses the 4 most
 * common for logging
 */
void darshan_walk_file_accesses(struct darshan_job_runtime* final_job)
{
    int i;

    for(i=0; i<final_job->file_count; i++)
    {
        //printf("file: %d\n", i);
        
        /* walk trees for both access sizes and stride sizes to pick 4 most
         * common of each
         */

        /* NOTE: setting global variables here for cp_access_walker() */
        walker_file = &final_job->file_runtime_array[i];
        walker_validx = CP_ACCESS1_ACCESS;
        walker_cntidx = CP_ACCESS1_COUNT;
        twalk(walker_file->access_root,
            cp_access_walker);
        tdestroy(walker_file->access_root, free);

        walker_validx = CP_STRIDE1_STRIDE;
        walker_cntidx = CP_STRIDE1_COUNT;
        twalk(walker_file->stride_root,
            cp_access_walker);
        tdestroy(walker_file->stride_root, free);
    }

    return;
}

static int file_compare(const void* a, const void* b)
{
    const struct darshan_file* f_a = a;
    const struct darshan_file* f_b = b;
    
    if(f_a->rank < f_b->rank)
        return 1;
    if(f_a->rank > f_b->rank)
        return -1;
    
    return 0;
}

/*
 * Local variables:
 *  c-indent-level: 4
 *  c-basic-offset: 4
 * End:
 *
 * vim: ts=8 sts=4 sw=4 expandtab
 */