margo-p2p-latency.c 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * Copyright (c) 2017 UChicago Argonne, LLC
 *
 * See COPYRIGHT in top-level directory.
 */

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include <mpi.h>

#include <margo.h>
#include <mercury.h>
#include <abt.h>
#include <ssg.h>
#include <ssg-mpi.h>

struct options
{
    int iterations;
    unsigned int mercury_timeout_client;
    unsigned int mercury_timeout_server;
    char* diag_file_name;
    char* na_transport;
};

static void parse_args(int argc, char **argv, struct options *opts);
static void usage(void);
static int run_benchmark(int iterations, hg_id_t id, ssg_member_id_t target, 
    ssg_group_id_t gid, margo_instance_id mid, double *measurement_array);
static void bench_routine_print(const char* op, int size, int iterations, 
    double* measurement_array);
static int measurement_cmp(const void* a, const void *b);
DECLARE_MARGO_RPC_HANDLER(noop_ult);

static hg_id_t noop_id;
static int rpcs_serviced = 0;
static ABT_eventual rpcs_serviced_eventual;
static struct options g_opts;

int main(int argc, char **argv) 
{
    margo_instance_id mid;
    int nranks;
    hg_context_t *hg_context;
    hg_class_t *hg_class;
    ABT_xstream xstream;
    ABT_sched sched;
    ABT_pool pool;
    int ret;
    ssg_group_id_t gid;
    ssg_member_id_t self;
    int rank;
    double *measurement_array;
    int namelen;
    char processor_name[MPI_MAX_PROCESSOR_NAME];

    /* NOTE: Margo is very likely to create a single producer (the
     * progress function), multiple consumer usage pattern that
     * causes excess memory consumption in some versions of
     * Argobots.  See
     * https://xgitlab.cels.anl.gov/sds/margo/issues/40 for details.
     * We therefore manually set the ABT_MEM_MAX_NUM_STACKS parameter 
     * for Argobots to a low value so that RPC handler threads do not
     * queue large numbers of stacks for reuse in per-ES data 
     * structures.
     */
    putenv("ABT_MEM_MAX_NUM_STACKS=8");

    ABT_init(argc, argv);
    MPI_Init(&argc, &argv);

    /* 2 process rtt measurements only */
    MPI_Comm_size(MPI_COMM_WORLD, &nranks);
    if(nranks != 2)
    {
        usage();
        exit(EXIT_FAILURE);
    }
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Get_processor_name(processor_name,&namelen);
    printf("Process %d of %d is on %s\n",
	rank, nranks, processor_name);

    parse_args(argc, argv, &g_opts);

    /* boilerplate ABT initialization steps */
    /****************************************/

    /* get main pool for running mercury progress and RPC handlers */
    /* NOTE: we use the ABT scheduler that idles while not busy */
    ret = ABT_sched_create_basic(ABT_SCHED_BASIC_WAIT, 0, NULL,
        ABT_SCHED_CONFIG_NULL, &sched);
    if(ret != 0)
    {
        fprintf(stderr, "Error: ABT_sched_create_basic()\n");
        return(-1);
    }
    ret = ABT_xstream_self(&xstream);
    if(ret != 0)
    {
        fprintf(stderr, "Error: ABT_xstream_self()\n");
        return(-1);
    }
    ret = ABT_xstream_set_main_sched(xstream, sched);
    if(ret != 0)
    {
        fprintf(stderr, "Error: ABT_xstream_set_main_sched()\n");
        return(-1);
    }
    ret = ABT_xstream_get_main_pools(xstream, 1, &pool);
    if(ret != 0)
    {
        fprintf(stderr, "Error: ABT_xstream_get_main_pools()\n");
        return(-1);
    }

    /* boilerplate HG initialization steps */
    /***************************************/

    if((rank == 0 && g_opts.mercury_timeout_client == 0) ||
       (rank == 1 && g_opts.mercury_timeout_server == 0))
    {
        struct hg_init_info hii;
        
        /* If mercury timeout of zero is requested, then set
         * init option to NO_BLOCK.  This allows some transports to go
         * faster because they do not have to set up or maintain the data
         * structures necessary for signaling completion on blocked
         * operations.
         */
        memset(&hii, 0, sizeof(hii));
        hii.na_init_info.progress_mode = NA_NO_BLOCK;
        hg_class = HG_Init_opt(g_opts.na_transport, HG_TRUE, &hii);
    }
    else
    {
        hg_class = HG_Init(g_opts.na_transport, HG_TRUE);
    }
    if(!hg_class)
    {
        fprintf(stderr, "Error: HG_Init()\n");
        return(-1);
    }
    hg_context = HG_Context_create(hg_class);
    if(!hg_context)
    {
        fprintf(stderr, "Error: HG_Context_create()\n");
        HG_Finalize(hg_class);
        return(-1);
    }

    /* actually start margo */
    mid = margo_init_pool(pool, pool, hg_context);
    assert(mid);

    if(g_opts.diag_file_name)
        margo_diag_start(mid);

    /* adjust mercury timeout in Margo if requested */
    if(rank == 0 && g_opts.mercury_timeout_client != UINT_MAX)
        margo_set_param(mid, MARGO_PARAM_PROGRESS_TIMEOUT_UB, &g_opts.mercury_timeout_client);
    if(rank == 1 && g_opts.mercury_timeout_server != UINT_MAX)
        margo_set_param(mid, MARGO_PARAM_PROGRESS_TIMEOUT_UB, &g_opts.mercury_timeout_server);

    noop_id = MARGO_REGISTER(
        mid, 
        "noop_rpc", 
        void,
        void,
        noop_ult);

    /* set up group */
    ret = ssg_init(mid);
    assert(ret == 0);
    gid = ssg_group_create_mpi("margo-p2p-latency", MPI_COMM_WORLD, NULL, NULL);
    assert(gid != SSG_GROUP_ID_NULL);

    assert(ssg_get_group_size(gid) == 2);

    self = ssg_get_group_self_id(gid);
#if 0
    printf("MPI rank %d has SSG ID %lu\n", rank, self);
#endif

    if(self == 0)
    {
        /* ssg id 0 runs benchmark */

        measurement_array = calloc(g_opts.iterations, sizeof(*measurement_array));
        assert(measurement_array);

        ret = run_benchmark(g_opts.iterations, noop_id, 1, gid, mid, measurement_array);
        assert(ret == 0);

        printf("# <op> <iterations> <size> <min> <q1> <med> <avg> <q3> <max>\n");
        bench_routine_print("noop", 0, g_opts.iterations, measurement_array);
        free(measurement_array);
    }
    else
    {
        /* ssg id 1 acts as server, waiting until iterations have been
         * completed
         */

        ret = ABT_eventual_create(0, &rpcs_serviced_eventual);
        assert(ret == 0);

        ABT_eventual_wait(rpcs_serviced_eventual, NULL);
        assert(rpcs_serviced == g_opts.iterations);
        sleep(3);
    }

    ssg_group_destroy(gid);
    ssg_finalize();

    if(g_opts.diag_file_name)
        margo_diag_dump(mid, g_opts.diag_file_name, 1);

    margo_finalize(mid);
    HG_Context_destroy(hg_context);
    HG_Finalize(hg_class);
    MPI_Finalize();
    ABT_finalize();

    return 0;
}

static void parse_args(int argc, char **argv, struct options *opts)
{
    int opt;
    int ret;

    memset(opts, 0, sizeof(*opts));

    /* default to using whatever the standard timeout is in margo */
    opts->mercury_timeout_client = UINT_MAX;
    opts->mercury_timeout_server = UINT_MAX; 

    while((opt = getopt(argc, argv, "n:i:d:t:")) != -1)
    {
        switch(opt)
        {
            case 'd':
                opts->diag_file_name = strdup(optarg);
                if(!opts->diag_file_name)
                {
                    perror("strdup");
                    exit(EXIT_FAILURE);
                }
                break;
            case 'i':
                ret = sscanf(optarg, "%d", &opts->iterations);
                if(ret != 1)
                {
                    usage();
                    exit(EXIT_FAILURE);
                }
                break;
            case 't':
                ret = sscanf(optarg, "%u,%u", &opts->mercury_timeout_client, &opts->mercury_timeout_server);
                if(ret != 2)
                {
                    usage();
                    exit(EXIT_FAILURE);
                }
                break;
            case 'n':
                opts->na_transport = strdup(optarg);
                if(!opts->na_transport)
                {
                    perror("strdup");
                    exit(EXIT_FAILURE);
                }
                break;
            default:
                usage();
                exit(EXIT_FAILURE);
        }
    }

    if(opts->iterations < 1 || !opts->na_transport)
    {
        usage();
        exit(EXIT_FAILURE);
    }

    return;
}

static void usage(void)
{
    fprintf(stderr,
        "Usage: "
        "margo-p2p-latency -i <iterations> -n <na>\n"
        "\t-i <iterations> - number of RPC iterations\n"
        "\t-n <na> - na transport\n"
        "\t[-d filename] - enable diagnostics output \n"
        "\t\texample: mpiexec -n 2 ./margo-p2p-latency -i 10000 -n verbs://\n"
        "\t\t(must be run with exactly 2 processes\n");
    
    return;
}


/* service a remote RPC for a no-op */
static void noop_ult(hg_handle_t handle)
{
    margo_respond(handle, NULL);
    margo_destroy(handle);

    rpcs_serviced++;
    if(rpcs_serviced == g_opts.iterations)
    {
        ABT_eventual_set(rpcs_serviced_eventual, NULL, 0);
    }

    return;
}
DEFINE_MARGO_RPC_HANDLER(noop_ult)

static int run_benchmark(int iterations, hg_id_t id, ssg_member_id_t target, 
    ssg_group_id_t gid, margo_instance_id mid, double *measurement_array)
{
    hg_handle_t handle;
    hg_addr_t target_addr;
    int i;
    int ret;
    double tm1, tm2;

    target_addr = ssg_get_addr(gid, target);
    assert(target_addr != HG_ADDR_NULL);

    ret = margo_create(mid, target_addr, id, &handle);
    assert(ret == 0);

    for(i=0; i<iterations; i++)
    {
        tm1 = ABT_get_wtime();
        ret = margo_forward(handle, NULL);
        tm2 = ABT_get_wtime();
        assert(ret == 0);
        measurement_array[i] = tm2-tm1;
    }

    margo_destroy(handle);

    return(0);
}

static void bench_routine_print(const char* op, int size, int iterations, double* measurement_array)
{
    double min, max, q1, q3, med, avg, sum;
    int bracket1, bracket2;
    int i;

    qsort(measurement_array, iterations, sizeof(double), measurement_cmp);

    min = measurement_array[0];
    max = measurement_array[iterations-1];

    sum = 0;
    for(i=0; i<iterations; i++)
    {
        sum += measurement_array[i];
    }
    avg = sum/(double)iterations;

    bracket1 = iterations/2;
    if(iterations%2)
        bracket2 = bracket1 + 1;
    else
        bracket2 = bracket1;
    med = (measurement_array[bracket1] + measurement_array[bracket2])/(double)2;

    bracket1 = iterations/4;
    if(iterations%4)
        bracket2 = bracket1 + 1;
    else
        bracket2 = bracket1;
    q1 = (measurement_array[bracket1] + measurement_array[bracket2])/(double)2;

    bracket1 *= 3;
    if(iterations%4)
        bracket2 = bracket1 + 1;
    else
        bracket2 = bracket1;
    q3 = (measurement_array[bracket1] + measurement_array[bracket2])/(double)2;

    printf("%s\t%d\t%d\t%.9f\t%.9f\t%.9f\t%.9f\t%.9f\t%.9f\n", op, iterations, size, min, q1, med, avg, q3, max);
#if 0
    for(i=0; i<iterations; i++)
    {
        printf("\t%.9f", measurement_array[i]);
    }
    printf("\n");
#endif
    fflush(NULL);

    return;
}

static int measurement_cmp(const void* a, const void *b)
{
    const double *d_a = a;
    const double *d_b = b;

    if(*d_a < *d_b)
        return(-1);
    else if(*d_a > *d_b)
        return(1);
    else
        return(0);
}