ch3u_rma_sync.c 59.8 KB
Newer Older
1
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
2 3 4 5 6 7 8 9
/*
 *  (C) 2001 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include "mpidimpl.h"
#include "mpidrma.h"

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Notes for memory barriers in RMA synchronizations

   When SHM is allocated for RMA window, we need to add memory berriers at proper
   places in RMA synchronization routines to guarantee the ordering of read/write
   operations, so that any operations after synchronization calls will see the
   correct data.

   There are four kinds of operations involved in the following explanation:

   1. Local loads/stores: any operations happening outside RMA epoch and accessing
      each process's own window memory.

   2. SHM operations: any operations happening inside RMA epoch. They may access
      any processes' window memory, which include direct loads/stores, and
      RMA operations that are internally implemented as direct loads/stores in
      MPI implementation.

   3. PROC_SYNC: synchronzations among processes by sending/recving messages.

   4. MEM_SYNC: a full memory barrier. It ensures the ordering of read/write
      operations on each process.

   (1) FENCE synchronization

              RANK 0                           RANK 1

       (local loads/stores)             (local loads/stores)

           WIN_FENCE {                    WIN_FENCE {
               MEM_SYNC                       MEM_SYNC
               PROC_SYNC -------------------- PROC_SYNC
               MEM_SYNC                       MEM_SYNC
           }                              }

        (SHM operations)                  (SHM operations)

           WIN_FENCE {                     WIN_FENCE {
               MEM_SYNC                        MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
               MEM_SYNC                        MEM_SYNC
           }                               }

      (local loads/stores)              (local loads/stores)

       We need MEM_SYNC before and after PROC_SYNC for both starting WIN_FENCE
       and ending WIN_FENCE, to ensure the ordering between local loads/stores
       and PROC_SYNC in starting WIN_FENCE (and vice versa in ending WIN_FENCE),
       and the ordering between PROC_SYNC and SHM operations in starting WIN_FENCE
       (and vice versa for ending WIN_FENCE).

       In starting WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous local loads/stores to other processes; after PROC_SYNC, each
       process knows that everyone else already exposed their local loads/stores;
       the MEM_SYNC after PROC_SYNC ensures that my following SHM operations will
       happen after PROC_SYNC and will see the latest data on other processes.

       In ending WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous SHM operations to other processes; after PROC_SYNC, each process
       knows everyone else already exposed their SHM operations; the MEM_SYNC
       after PROC_SYNC ensures that my following local loads/stores will happen
       after PROC_SYNC and will see the latest data in my memory region.

   (2) POST-START-COMPLETE-WAIT synchronization

              RANK 0                           RANK 1

                                          (local loads/stores)

           WIN_START {                      WIN_POST {
                                                MEM_SYNC
               PROC_SYNC ---------------------- PROC_SYNC
               MEM_SYNC
           }                                }

         (SHM operations)

           WIN_COMPLETE {                  WIN_WAIT/TEST {
               MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
                                               MEM_SYNC
           }                               }

                                          (local loads/stores)

       We need MEM_SYNC before PROC_SYNC for WIN_POST and WIN_COMPLETE, and
       MEM_SYNC after PROC_SYNC in WIN_START and WIN_WAIT/TEST, to ensure the
       ordering between local loads/stores and PROC_SYNC in WIN_POST (and
       vice versa in WIN_WAIT/TEST), and the ordering between PROC_SYNC and SHM
       operations in WIN_START (and vice versa in WIN_COMPLETE).

       In WIN_POST, the MEM_SYNC before PROC_SYNC essentially exposes previous
       local loads/stores to group of origin processes; after PROC_SYNC, origin
       processes knows all target processes already exposed their local
       loads/stores; in WIN_START, the MEM_SYNC after PROC_SYNC ensures that
       following SHM operations will happen after PROC_SYNC and will see the
       latest data on target processes.

       In WIN_COMPLETE, the MEM_SYNC before PROC_SYNC essentailly exposes previous
       SHM operations to group of target processes; after PROC_SYNC, target
       processes knows all origin process already exposed their SHM operations;
       in WIN_WAIT/TEST, the MEM_SYNC after PROC_SYNC ensures that following local
       loads/stores will happen after PROC_SYNC and will see the latest data in
       my memory region.

   (3) Passive target synchronization

              RANK 0                          RANK 1

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         PROC_SYNC -------------------- PROC_SYNC

         WIN_LOCK (target=1) {
             PROC_SYNC (lock granted)
             MEM_SYNC
         }

         (SHM operations)

         WIN_UNLOCK (target=1) {
             MEM_SYNC
             PROC_SYNC (lock released)
         }

         PROC_SYNC -------------------- PROC_SYNC

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         We need MEM_SYNC after PROC_SYNC in WIN_LOCK, and MEM_SYNC before
         PROC_SYNC in WIN_UNLOCK, to ensure the ordering between SHM operations
         and PROC_SYNC and vice versa.

         In WIN_LOCK, the MEM_SYNC after PROC_SYNC guarantees two things:
         (a) it guarantees that following SHM operations will happen after
         lock is granted; (b) it guarantees that following SHM operations
         will happen after any PROC_SYNC with target before WIN_LOCK is called,
         which means those SHM operations will see the latest data on target
         process.

         In WIN_UNLOCK, the MEM_SYNC before PROC_SYNC also guarantees two
         things: (a) it guarantees that SHM operations will happen before
         lock is released; (b) it guarantees that SHM operations will happen
         before any PROC_SYNC with target after WIN_UNLOCK is returned, which
         means following SHM operations on that target will see the latest data.

         WIN_LOCK_ALL/UNLOCK_ALL are same with WIN_LOCK/UNLOCK.

              RANK 0                          RANK 1

         WIN_LOCK_ALL

         (SHM operations)

         WIN_FLUSH(target=1) {
             MEM_SYNC
         }

         PROC_SYNC ------------------------PROC_SYNC

                                           WIN_LOCK(target=1) {
                                               PROC_SYNC (lock granted)
                                               MEM_SYNC
                                           }

                                           (SHM operations)

                                           WIN_UNLOCK(target=1) {
                                               MEM_SYNC
                                               PROC_SYNC (lock released)
                                           }

         WIN_UNLOCK_ALL

         We need MEM_SYNC in WIN_FLUSH to ensure the ordering between SHM
         operations and PROC_SYNC.

         The MEM_SYNC in WIN_FLUSH guarantees that all SHM operations before
         this WIN_FLUSH will happen before any PROC_SYNC with target after
         this WIN_FLUSH, which means SHM operations on target process after
         PROC_SYNC with origin will see the latest data.
*/

Xin Zhao's avatar
Xin Zhao committed
212 213 214 215 216 217 218 219
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_lockqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_winlock_getlocallock);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_wincreate_allgather);

MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_set);

void MPIDI_CH3_RMA_Init_sync_pvars(void)
220
{
Xin Zhao's avatar
Xin Zhao committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    /* rma_lockqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_lockqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate Lock Queue element (in seconds)");

    /* rma_winlock_getlocallock */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_winlock_getlocallock,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_LOCK:Get local lock (in seconds)");

    /* rma_wincreate_allgather */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_wincreate_allgather,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_CREATE:Allgather (in seconds)");

    /* rma_rmaqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate RMA Queue element (in seconds)");

    /* rma_rmaqueue_set */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_set,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Set fields in RMA Queue element (in seconds)");
265
}
266

267 268
/* These are used to use a common routine to complete lists of RMA
   operations with a single routine, while collecting data that
269 270 271 272
   distinguishes between different synchronization modes.  This is not
   thread-safe; the best choice for thread-safety is to eliminate this
   ability to discriminate between the different types of RMA synchronization.
*/
273

274 275 276
/*
 * These routines provide a default implementation of the MPI RMA operations
 * in terms of the low-level, two-sided channel operations.  A channel
277 278
 * may override these functions, on a per-window basis, by overriding
 * the MPID functions in the RMAFns section of MPID_Win object.
279 280
 */

281 282
#define SYNC_POST_TAG 100

283

284 285 286 287
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_fence
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
288
int MPIDI_Win_fence(int assert, MPID_Win * win_ptr)
289
{
290 291 292
    int i, made_progress = 0;
    int local_completed = 0, remote_completed = 0;
    MPIDI_RMA_Target_t *curr_target = NULL;
Wesley Bland's avatar
Wesley Bland committed
293
    mpir_errflag_t errflag = MPIR_ERR_NONE;
294
    int mpi_errno = MPI_SUCCESS;
295 296 297 298
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_FENCE);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_FENCE);

299 300 301 302
    MPIU_ERR_CHKANDJUMP((win_ptr->states.access_state != MPIDI_RMA_NONE &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED) ||
                        win_ptr->states.exposure_state != MPIDI_RMA_NONE,
James Dinan's avatar
James Dinan committed
303 304
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

305
    win_ptr->posted_ops_cnt = 0;
306

307 308 309
    if (assert & MPI_MODE_NOPRECEDE) {
        if (assert & MPI_MODE_NOSUCCEED) {
            goto fn_exit;
310
        }
311 312 313 314 315 316 317 318 319 320 321
        else {
            /* It is possible that there is a IBARRIER in MPI_WIN_FENCE with
               MODE_NOPRECEDE not being completed, we let the progress engine
               to delete its request when it is completed. */
            if (win_ptr->fence_sync_req != MPI_REQUEST_NULL) {
                MPID_Request *req_ptr;
                MPID_Request_get_ptr(win_ptr->fence_sync_req, req_ptr);
                MPID_Request_release(req_ptr);
                win_ptr->fence_sync_req = MPI_REQUEST_NULL;
                win_ptr->states.access_state = MPIDI_RMA_NONE;
            }
322

323 324
            if (win_ptr->shm_allocated == TRUE) {
                MPID_Comm *node_comm_ptr = win_ptr->comm_ptr->node_comm;
325

326 327
                /* Ensure ordering of load/store operations. */
                OPA_read_write_barrier();
328

329 330 331
                mpi_errno = MPIR_Barrier_impl(node_comm_ptr, &errflag);
                if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
                MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
332

333 334
                /* Ensure ordering of load/store operations. */
                OPA_read_write_barrier();
335 336
            }

337 338
            mpi_errno = MPIR_Ibarrier_impl(win_ptr->comm_ptr, &(win_ptr->fence_sync_req));
            if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
339

340 341
            win_ptr->states.access_state = MPIDI_RMA_FENCE_ISSUED;
            num_active_issued_win++;
342

343
            goto fn_exit;
344
        }
345
    }
346

347 348 349
    if (win_ptr->states.access_state == MPIDI_RMA_FENCE_ISSUED) {
        while (win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED) {
            mpi_errno = wait_progress_engine();
350 351 352
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
353
    }
354

355 356 357 358 359 360 361 362 363 364
    /* Set sync_flag in target structs. */
    for (i = 0; i < win_ptr->num_slots; i++) {
        curr_target = win_ptr->slots[i].target_list;
        while (curr_target != NULL) {

            /* set sync_flag in sync struct */
            if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH) {
                curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH;
                curr_target->sync.have_remote_incomplete_ops = 0;
                curr_target->sync.outstanding_acks++;
365
            }
366
            curr_target = curr_target->next;
367
        }
368
    }
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383
    /* Issue out all operations. */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

    /* Wait for remote completion. */
    do {
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_win(win_ptr,
                                                   &local_completed,
                                                   &remote_completed);
        if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
        if (!remote_completed) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
384
        }
385
    } while (!remote_completed);
386

387 388 389
    /* Cleanup all targets on window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
James Dinan's avatar
James Dinan committed
390

391
    MPIU_Assert(win_ptr->non_empty_slots == 0);
392

393 394 395 396
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }
397

398 399 400
    mpi_errno = MPIR_Barrier_impl(win_ptr->comm_ptr, &errflag);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
    MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
401

402 403 404 405
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }
406

407 408 409 410 411
    if (assert & MPI_MODE_NOSUCCEED) {
        win_ptr->states.access_state = MPIDI_RMA_NONE;
    }
    else {
        win_ptr->states.access_state = MPIDI_RMA_FENCE_GRANTED;
412 413
    }

414 415 416
    /* There should be no active requests. */
    MPIU_Assert(win_ptr->active_req_cnt == 0);

417
  fn_exit:
418 419 420
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_FENCE);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
421
  fn_fail:
422 423 424 425 426
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}


427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static int fill_ranks_in_win_grp(MPID_Win *win_ptr, MPID_Group *group_ptr, int *ranks_in_win_grp)
{
    int mpi_errno = MPI_SUCCESS;
    int i, *ranks_in_grp;
    MPID_Group *win_grp_ptr;
    MPIU_CHKLMEM_DECL(1);
    MPIDI_STATE_DECL(MPID_STATE_FILL_RANKS_IN_WIN_GRP);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_FILL_RANKS_IN_WIN_GRP);

    MPIU_CHKLMEM_MALLOC(ranks_in_grp, int *, group_ptr->size * sizeof(int),
                        mpi_errno, "ranks_in_grp");
    for (i = 0; i < group_ptr->size; i++) ranks_in_grp[i] = i;

    mpi_errno = MPIR_Comm_group_impl(win_ptr->comm_ptr, &win_grp_ptr);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

    mpi_errno = MPIR_Group_translate_ranks_impl(group_ptr, group_ptr->size,
                                                ranks_in_grp, win_grp_ptr, ranks_in_win_grp);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

    mpi_errno = MPIR_Group_free_impl(win_grp_ptr);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

  fn_exit:
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_FILL_RANKS_IN_WIN_GRP);
    return mpi_errno;
 fn_fail:
    goto fn_exit;
}


460
#undef FUNCNAME
461
#define FUNCNAME MPIDI_Win_post
462 463
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
464
int MPIDI_Win_post(MPID_Group * post_grp_ptr, int assert, MPID_Win * win_ptr)
465
{
466
    int *post_ranks_in_win_grp;
467
    int mpi_errno = MPI_SUCCESS;
468
    MPIU_CHKLMEM_DECL(3);
469
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_POST);
470

471
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_POST);
472

473 474 475 476 477
    /* Note that here we cannot distinguish if this exposure epoch is overlapped
       with an exposure epoch of FENCE (which is not allowed), since FENCE may be
       ended up with not unsetting the window state. We can only detect if this
       exposure epoch is overlapped with another exposure epoch of PSCW. */
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_NONE,
478
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
479

480
    win_ptr->states.exposure_state = MPIDI_RMA_PSCW_EXPO;
481

482
    win_ptr->at_completion_counter += post_grp_ptr->size;
483

484 485 486
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
487 488
    }

489 490 491
    if ((assert & MPI_MODE_NOCHECK) == 0) {
        MPI_Request *req;
        MPI_Status *status;
492 493
        int i, post_grp_size, dst, rank;
        MPID_Comm *win_comm_ptr;
494

495 496
        /* NOCHECK not specified. We need to notify the source
         * processes that Post has been called. */
497

498
        post_grp_size = post_grp_ptr->size;
499 500
        win_comm_ptr = win_ptr->comm_ptr;
        rank = win_ptr->comm_ptr->rank;
501

502 503 504 505 506 507 508 509 510
        MPIU_CHKLMEM_MALLOC(post_ranks_in_win_grp, int *,
                            post_grp_size * sizeof(int), mpi_errno, "post_ranks_in_win_grp");
        mpi_errno = fill_ranks_in_win_grp(win_ptr, post_grp_ptr, post_ranks_in_win_grp);
        if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

        MPIU_CHKLMEM_MALLOC(req, MPI_Request *, post_grp_size * sizeof(MPI_Request),
                            mpi_errno, "req");
        MPIU_CHKLMEM_MALLOC(status, MPI_Status *, post_grp_size * sizeof(MPI_Status),
                            mpi_errno, "status");
511

512 513
        /* Send a 0-byte message to the source processes */
        for (i = 0; i < post_grp_size; i++) {
514
            dst = post_ranks_in_win_grp[i];
515

516 517 518 519
            if (dst != rank) {
                MPID_Request *req_ptr;
                mpi_errno = MPID_Isend(&i, 0, MPI_INT, dst, SYNC_POST_TAG, win_comm_ptr,
                                       MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
520
                if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
521 522 523 524 525
                req[i] = req_ptr->handle;
            }
            else {
                req[i] = MPI_REQUEST_NULL;
            }
526
        }
527

528 529 530 531 532 533 534 535 536 537 538 539
        mpi_errno = MPIR_Waitall_impl(post_grp_size, req, status);
        if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
            MPIU_ERR_POP(mpi_errno);

        /* --BEGIN ERROR HANDLING-- */
        if (mpi_errno == MPI_ERR_IN_STATUS) {
            for (i = 0; i < post_grp_size; i++) {
                if (status[i].MPI_ERROR != MPI_SUCCESS) {
                    mpi_errno = status[i].MPI_ERROR;
                    MPIU_ERR_POP(mpi_errno);
                }
            }
540
        }
541
        /* --END ERROR HANDLING-- */
542
    }
543

544
  fn_exit:
545 546
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_POST);
547 548
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
549
  fn_fail:
550 551 552 553
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}

554

555 556 557 558 559
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_start
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
int MPIDI_Win_start(MPID_Group * group_ptr, int assert, MPID_Win * win_ptr)
560
{
561
    int mpi_errno = MPI_SUCCESS;
562
    MPIU_CHKLMEM_DECL(2);
563 564
    MPIU_CHKPMEM_DECL(2);
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_START);
565

566
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_START);
567

568 569 570 571 572 573 574 575 576
    /* Note that here we cannot distinguish if this access epoch is overlapped
       with an access epoch of FENCE (which is not allowed), since FENCE may be
       ended up with not unsetting the window state. We can only detect if this
       access epoch is overlapped with another access epoch of PSCW or Passive
       Target. */
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
577

578
    win_ptr->start_grp_size = group_ptr->size;
579

580
    if ((assert & MPI_MODE_NOCHECK) == 0) {
Xin Zhao's avatar
Xin Zhao committed
581
        int i, intra_cnt;
582 583 584 585 586 587 588 589 590 591
        MPI_Request *intra_start_req = NULL;
        MPI_Status *intra_start_status = NULL;
        MPID_Comm *comm_ptr = win_ptr->comm_ptr;
        int rank = comm_ptr->rank;

        /* wait for messages from local processes */
        MPIU_CHKPMEM_MALLOC(win_ptr->start_ranks_in_win_grp, int *, win_ptr->start_grp_size * sizeof(int),
                            mpi_errno, "win_ptr->start_ranks_in_win_grp");
        mpi_errno = fill_ranks_in_win_grp(win_ptr, group_ptr, win_ptr->start_ranks_in_win_grp);
        if (mpi_errno) MPIU_ERR_POP(mpi_errno);
592

593 594 595 596
        /* post IRECVs */
        MPIU_CHKPMEM_MALLOC(win_ptr->start_req, MPI_Request *,
                            win_ptr->start_grp_size * sizeof(MPI_Request),
                            mpi_errno, "win_ptr->start_req");
597

598 599 600 601 602 603 604 605 606
        if (win_ptr->shm_allocated == TRUE) {
            int node_comm_size = comm_ptr->node_comm->local_size;
            MPIU_CHKLMEM_MALLOC(intra_start_req, MPI_Request *,
                                node_comm_size * sizeof(MPI_Request),
                                mpi_errno, "intra_start_req");
            MPIU_CHKLMEM_MALLOC(intra_start_status, MPI_Status *,
                                node_comm_size * sizeof(MPI_Status),
                                mpi_errno, "intra_start_status");
        }
607

608 609
        intra_cnt = 0;
        for (i = 0; i < win_ptr->start_grp_size; i++) {
610
            MPID_Request *req_ptr;
611 612
            MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
            int src = win_ptr->start_ranks_in_win_grp[i];
613

614 615 616
            if (src != rank) {
                MPIDI_Comm_get_vc(comm_ptr, rank, &orig_vc);
                MPIDI_Comm_get_vc(comm_ptr, src, &target_vc);
617

618 619
                mpi_errno = MPID_Irecv(NULL, 0, MPI_INT, src, SYNC_POST_TAG,
                                       comm_ptr, MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
620
                if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
621

622 623 624 625 626 627 628 629 630 631 632
                if (win_ptr->shm_allocated == TRUE &&
                    orig_vc->node_id == target_vc->node_id) {
                    intra_start_req[intra_cnt++] = req_ptr->handle;
                    win_ptr->start_req[i] = MPI_REQUEST_NULL;
                }
                else {
                    win_ptr->start_req[i] = req_ptr->handle;
                }
            }
            else {
                win_ptr->start_req[i] = MPI_REQUEST_NULL;
633
            }
634
        }
635

636 637 638 639 640 641 642 643 644 645 646 647
        /* for targets on SHM, waiting until their IRECVs to be finished */
        if (intra_cnt) {
            mpi_errno = MPIR_Waitall_impl(intra_cnt, intra_start_req, intra_start_status);
            if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
                MPIU_ERR_POP(mpi_errno);
            /* --BEGIN ERROR HANDLING-- */
            if (mpi_errno == MPI_ERR_IN_STATUS) {
                for (i = 0; i < intra_cnt; i++) {
                    if (intra_start_status[i].MPI_ERROR != MPI_SUCCESS) {
                        mpi_errno = intra_start_status[i].MPI_ERROR;
                        MPIU_ERR_POP(mpi_errno);
                    }
648
                }
649
            }
650
            /* --END ERROR HANDLING-- */
651
        }
652

653 654 655 656
        if (win_ptr->shm_allocated == TRUE) {
            /* Ensure ordering of load/store operations */
            OPA_read_write_barrier();
        }
657 658
    }

659 660
    win_ptr->states.access_state = MPIDI_RMA_PSCW_ISSUED;
    num_active_issued_win++;
661

662 663
    MPIU_Assert(win_ptr->posted_ops_cnt == 0);
    MPIU_Assert(win_ptr->active_req_cnt == 0);
664

665
 fn_exit:
666 667 668
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_START);
    return mpi_errno;
669 670 671
 fn_fail:
    MPIU_CHKPMEM_REAP();
    goto fn_exit;
672 673 674
}


675

676
#undef FUNCNAME
677
#define FUNCNAME MPIDI_Win_complete
678 679
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
680
int MPIDI_Win_complete(MPID_Win * win_ptr)
681
{
682
    int mpi_errno = MPI_SUCCESS;
683 684 685 686 687
    int i, dst, rank = win_ptr->comm_ptr->rank;
    int local_completed = 0, remote_completed = 0;
    MPID_Comm *win_comm_ptr = win_ptr->comm_ptr;
    MPIDI_RMA_Target_t *curr_target;
    int made_progress;
688
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_COMPLETE);
689

690
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_COMPLETE);
691

692 693 694
    /* Access epochs on the same window must be disjoint. */
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PSCW_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED,
James Dinan's avatar
James Dinan committed
695 696
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

697 698 699 700 701 702
    if (win_ptr->states.access_state == MPIDI_RMA_PSCW_ISSUED) {
        while (win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
703 704
    }

705 706 707 708 709 710
    for (i = 0; i < win_ptr->start_grp_size; i++) {
        dst = win_ptr->start_ranks_in_win_grp[i];
        if (dst == rank) {
            win_ptr->at_completion_counter--;
            MPIU_Assert(win_ptr->at_completion_counter >= 0);
            continue;
711
        }
712

713 714 715 716 717 718 719
        if (win_comm_ptr->local_size <= win_ptr->num_slots)
            curr_target = win_ptr->slots[dst].target_list;
        else {
            curr_target = win_ptr->slots[dst % win_ptr->num_slots].target_list;
            while (curr_target != NULL && curr_target->target_rank != dst)
                curr_target = curr_target->next;
        }
720

721 722 723 724 725 726 727 728
        if (curr_target != NULL) {
            /* set sync_flag in sync struct */
            if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH) {
                curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH;
                curr_target->sync.have_remote_incomplete_ops = 0;
                curr_target->sync.outstanding_acks++;
            }
            curr_target->win_complete_flag = 1;
729 730
        }
        else {
731 732 733
            /* FIXME: do we need to wait for remote completion? */
            mpi_errno = send_decr_at_cnt_msg(dst, win_ptr);
            if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
734
        }
735 736
    }

737 738 739 740 741 742 743 744 745 746 747 748 749
    /* issue out all operations */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);

    /* wait until all slots are empty */
    do {
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_win(win_ptr, &local_completed,
                                                   &remote_completed);
        if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
        if (!remote_completed) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
750
        }
751
    } while (!remote_completed);
752

753 754 755
    /* Cleanup all targets on this window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
756

757
    MPIU_Assert(win_ptr->non_empty_slots == 0);
758

759 760 761
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
762
    }
763

764 765 766 767 768 769 770
    /* free start group stored in window */
    MPIU_Free(win_ptr->start_ranks_in_win_grp);
    win_ptr->start_ranks_in_win_grp = NULL;

    win_ptr->posted_ops_cnt = 0;
    MPIU_Assert(win_ptr->active_req_cnt == 0);
    MPIU_Assert(win_ptr->start_req == NULL);
771

772
    win_ptr->states.access_state = MPIDI_RMA_NONE;
773

774 775
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_COMPLETE);
776
    return mpi_errno;
777 778 779 780
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
781
}
782

783 784


785
#undef FUNCNAME
786
#define FUNCNAME MPIDI_Win_wait
787 788
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
789
int MPIDI_Win_wait(MPID_Win * win_ptr)
790
{
791 792 793 794
    int mpi_errno = MPI_SUCCESS;
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_WAIT);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_WAIT);
795

796
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
797
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
798

799
    /* wait for all operations from other processes to finish */
800 801 802 803
    while (win_ptr->at_completion_counter) {
        mpi_errno = wait_progress_engine();
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
804 805
    }

806 807 808
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
809 810
    }

811 812
    win_ptr->states.exposure_state = MPIDI_RMA_NONE;

813 814
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_WAIT);
815
    return mpi_errno;
816 817 818 819
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
820 821
}

822

823
#undef FUNCNAME
824
#define FUNCNAME MPIDI_Win_test
825 826
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
827
int MPIDI_Win_test(MPID_Win * win_ptr, int *flag)
828 829
{
    int mpi_errno = MPI_SUCCESS;
830
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_TEST);
831

832
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_TEST);
833

834
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
835
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
836

837 838
    mpi_errno = MPID_Progress_test();
    if (mpi_errno != MPI_SUCCESS) {
839
	MPIU_ERR_POP(mpi_errno);
840 841
    }

842 843 844 845 846
    *flag = (win_ptr->at_completion_counter) ? 0 : 1;
    if (*flag) {
        /* Ensure ordering of load/store operations. */
        if (win_ptr->shm_allocated == TRUE) {
            OPA_read_write_barrier();
847
        }
848 849

        win_ptr->states.exposure_state = MPIDI_RMA_NONE;
850 851
    }

852
  fn_exit:
853
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_TEST);
854
    return mpi_errno;
855
    /* --BEGIN ERROR HANDLING-- */
856
  fn_fail:
857
    goto fn_exit;
858
    /* --END ERROR HANDLING-- */
859 860
}

861

862
#undef FUNCNAME
863
#define FUNCNAME MPIDI_Win_lock
864 865
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
866
int MPIDI_Win_lock(int lock_type, int dest, int assert, MPID_Win * win_ptr)
867
{
868 869 870 871 872
    int made_progress = 0;
    int shm_target = FALSE;
    int rank = win_ptr->comm_ptr->rank;
    MPIDI_RMA_Target_t *target = NULL;
    MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
873
    int mpi_errno = MPI_SUCCESS;
874
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_LOCK);
875

876
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_LOCK);
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    /* Note that here we cannot distinguish if this access epoch is overlapped
       with an access epoch of FENCE (which is not allowed), since FENCE may be
       ended up with not unsetting the window state. We can only detect if this
       access epoch is overlapped with another access epoch of PSCW or Passive
       Target. */
    if (win_ptr->lock_epoch_count == 0) {
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
    else {
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED &&
                            win_ptr->states.access_state != MPIDI_RMA_PER_TARGET,
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
896

897 898 899 900 901 902
    if (dest != MPI_PROC_NULL) {
        /* check if we lock the same target window more than once. */
        mpi_errno = MPIDI_CH3I_Win_find_target(win_ptr, dest, &target);
        if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
        MPIU_ERR_CHKANDJUMP(target != NULL, mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
903

904
    /* Error handling is finished. */
905

906 907 908 909 910
    if (win_ptr->lock_epoch_count == 0) {
        win_ptr->states.access_state = MPIDI_RMA_PER_TARGET;
        num_passive_win++;
    }
    win_ptr->lock_epoch_count++;
911

912 913
    if (dest == MPI_PROC_NULL)
        goto fn_exit;
914

915 916 917 918 919
    if (win_ptr->shm_allocated == TRUE) {
        MPIDI_Comm_get_vc(win_ptr->comm_ptr, rank, &orig_vc);
        MPIDI_Comm_get_vc(win_ptr->comm_ptr, dest, &target_vc);
        if (orig_vc->node_id == target_vc->node_id)
            shm_target = TRUE;
920
    }
921

922 923 924
    /* Create a new target. */
    mpi_errno = MPIDI_CH3I_Win_create_target(win_ptr, dest, &target);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939
    /* Store lock_state (CALLED/ISSUED/GRANTED), lock_type (SHARED/EXCLUSIVE),
       lock_mode (MODE_NOCHECK). */
    if (assert & MPI_MODE_NOCHECK)
        target->access_state = MPIDI_RMA_LOCK_GRANTED;
    else
        target->access_state = MPIDI_RMA_LOCK_CALLED;
    target->lock_type = lock_type;
    target->lock_mode = assert;

    /* If Destination is myself or process on SHM, acquire the lock,
       wait until lock is granted. */
    if (!(assert & MPI_MODE_NOCHECK) && (dest == rank || shm_target)) {
        mpi_errno = MPIDI_CH3I_RMA_Make_progress_target(win_ptr, dest, &made_progress);
        if (mpi_errno != MPI_SUCCESS)
940 941
            MPIU_ERR_POP(mpi_errno);

942 943 944
        while (target->access_state != MPIDI_RMA_LOCK_GRANTED) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
945
                MPIU_ERR_POP(mpi_errno);
946
        }
947
    }
948

949 950 951
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
952 953
    }

954 955 956 957 958 959 960
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_LOCK);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
961 962 963
}

#undef FUNCNAME
964
#define FUNCNAME MPIDI_Win_unlock
965 966
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
967
int MPIDI_Win_unlock(int dest, MPID_Win *win_ptr)
968
{
969 970 971 972
    int made_progress = 0;
    int local_completed = 0, remote_completed = 0;
    MPIDI_RMA_Target_t *target = NULL;
    enum MPIDI_RMA_sync_types sync_flag;
973
    int mpi_errno = MPI_SUCCESS;
974
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_UNLOCK);
975

976
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_UNLOCK);
977

978
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PER_TARGET,
979
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
980

981
    /* Ensure ordering of load/store operations. */
982
    if (win_ptr->shm_allocated) {
983 984
        OPA_read_write_barrier();
    }
985

986 987 988 989 990 991 992 993 994 995 996 997 998
    if (dest == MPI_PROC_NULL)
        goto finish_unlock;

    /* When the process tries to acquire the lock on itself, it does not
       go through the progress engine. Therefore, it is possible that
       one process always grants the lock to itself but never process
       events coming from other processes. This may cause deadlock in
       applications where the program execution on target process depends
       on the happening of events from other processes. Here we poke
       the progress engine once to avoid such issue.  */
    mpi_errno = poke_progress_engine();
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
999

1000 1001 1002 1003 1004 1005 1006
    /* Find or recreate target. */
    mpi_errno = MPIDI_CH3I_Win_find_target(win_ptr, dest, &target);
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
    if (target == NULL) {
        mpi_errno = MPIDI_CH3I_Win_create_target(win_ptr, dest, &target);
        if (mpi_errno != MPI_SUCCESS)
1007
            MPIU_ERR_POP(mpi_errno);
1008
        target->access_state = MPIDI_RMA_LOCK_GRANTED;
1009 1010
    }

1011 1012 1013 1014 1015 1016 1017 1018 1019
    /* Set sync_flag in sync struct. */
    if (target->lock_mode & MPI_MODE_NOCHECK)
        sync_flag = MPIDI_RMA_SYNC_FLUSH;
    else
        sync_flag = MPIDI_RMA_SYNC_UNLOCK;
    if (target->sync.sync_flag < sync_flag) {
        target->sync.sync_flag = sync_flag;
        target->sync.have_remote_incomplete_ops = 0;
        target->sync.outstanding_acks++;
1020
    }
1021

1022 1023 1024 1025 1026
    /* Issue out all operations. */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_target(win_ptr, dest,
                                                    &made_progress);
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    /* Wait for remote completion. */
    do {
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_target(win_ptr, target,
                                                      &local_completed,
                                                      &remote_completed);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
        if (!remote_completed) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
1038
                MPIU_ERR_POP(mpi_errno);
1039
        }
1040
    } while (!remote_completed);
1041

1042 1043 1044
    /* Cleanup the target. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_single_target(win_ptr, target);
    if (mpi_errno != MPI_SUCCESS) MPIU_ERR_POP(mpi_errno);
1045

1046 1047 1048
 finish_unlock:
    win_ptr->posted_ops_cnt = 0;
    MPIU_Assert(win_ptr->active_req_cnt == 0);
1049

1050 1051 1052 1053 1054 1055
    win_ptr->lock_epoch_count--;
    if (win_ptr->lock_epoch_count == 0) {
        win_ptr->states.access_state = MPIDI_RMA_NONE;
        num_passive_win--;
        MPIU_Assert(num_passive_win >= 0);
    }
1056

1057