mpidpre.h 14.5 KB
Newer Older
1
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  (C) 2001 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

/* FIXME: This header should contain only the definitions exported to the
   mpiimpl.h level */

#if !defined(MPICH_MPIDPRE_H_INCLUDED)
#define MPICH_MPIDPRE_H_INCLUDED

/* Tell the compiler that we're going to declare struct MPID_Request later */
struct MPID_Request;

#if defined(HAVE_SYS_TYPES_H)
#include <sys/types.h>
#endif

20 21 22
/* The maximum message size is the size of a pointer; this allows MPI_Aint 
   to be larger than a pointer */
typedef MPIR_Pint MPIDI_msg_sz_t;
23 24 25

#include "mpid_dataloop.h"

26 27 28
/* FIXME: Include here? */
#include "opa_primitives.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* Include definitions from the channel which must exist before items in this 
   file (mpidpre.h) or the file it includes (mpiimpl.h) can be defined. */
#include "mpidi_ch3_pre.h"

/* FIXME: Who defines this name */
/* As of 8/1/06, no-one defined MSGS_UNORDERED.  We should consider 
   moving support for unordered messages to a different part of the code
   However, note that sequence numbers may be useful in other contexts, 
   including identifying messages when multithreaded (for better profiling
   tools) and handling cancellations (rather than relying on unique 
   request ids) 
*/
#if defined (MPIDI_CH3_MSGS_UNORDERED)
#define MPID_USE_SEQUENCE_NUMBERS
#endif

#if defined(MPID_USE_SEQUENCE_NUMBERS)
typedef unsigned long MPID_Seqnum_t;
#endif

#include "mpichconf.h"

51 52 53 54 55 56
#if CH3_RANK_BITS == 16
typedef int16_t MPIR_Rank_t;
#elif CH3_RANK_BITS == 32
typedef int32_t MPIR_Rank_t;
#endif /* CH3_RANK_BITS */

57 58 59 60 61 62
/* Indicates that this device is topology aware and implements the
   MPID_Get_node_id function (and friends). */
#define MPID_USE_NODE_IDS
typedef MPIR_Rank_t MPID_Node_id_t;


63 64 65
/* provides "pre" typedefs and such for NBC scheduling mechanism */
#include "mpid_sched_pre.h"

66 67 68 69 70 71 72 73 74
/* For the typical communication system for which the ch3 channel is
   appropriate, 16 bits is sufficient for the rank.  By also using 16
   bits for the context, we can reduce the size of the match
   information, which is beneficial for slower communication
   links. Further, this allows the total structure size to be 64 bits
   and the search operations can be optimized on 64-bit platforms. We
   use a union of the actual required structure with a MPIR_Upint, so
   in this optimized case, the "whole" field can be used for
   comparisons.
75 76 77 78 79 80 81 82

   Note that the MPICH2 code (in src/mpi) uses int for rank (and usually for 
   contextids, though some work is needed there).  

   Note:  We need to check for truncation of rank in MPID_Init - it should 
   confirm that the size of comm_world is less than 2^15, and in an communicator
   create (that may make use of dynamically created processes) that the
   size of the communicator is within range.
83 84 85 86

   If any part of the definition of this type is changed, those changes
   must be reflected in the debugger interface in src/mpi/debugger/dll_mpich2.c
   and dbgstub.c
87
*/
88 89 90 91 92
typedef struct MPIDI_Message_match_parts {
    int32_t tag;
    MPIR_Rank_t rank;
    MPIR_Context_id_t context_id;
} MPIDI_Message_match_parts_t;
93
typedef union {
94
    MPIDI_Message_match_parts_t parts;
95 96
    MPIR_Upint whole;
} MPIDI_Message_match;
97 98 99 100
/* NOTE-T1: We set MPIR_Process.attrs.tag_ub to this value during MPID_Init, but
 * upper level code may then modify this value after MPID_Init and before the
 * end of MPIR_Init_thread.  Don't use this value directly, always check the
 * runtime global value. */
101 102
#define MPIDI_TAG_UB (0x7fffffff)

103 104
/* Provides MPIDI_CH3_Pkt_t.  Must come after MPIDI_Message_match definition. */
#include "mpidpkt.h"
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

/*
 * THIS IS OBSOLETE AND UNUSED, BUT RETAINED FOR ITS DESCRIPTIONS OF THE
 * VARIOUS STATES.  Note that this is not entirely accurate, as the 
 * CA_COMPLETE state could depend on the packet type (e.g., for RMA 
 * operations).
 *
 * MPIDI_CA_t
 *
 * An enumeration of the actions to perform when the requested I/O operation 
 * has completed.
 *
 * MPIDI_CH3_CA_COMPLETE - The last operation for this request has completed.
 * The completion counter should be decremented.  If
 * it has reached zero, then the request should be released by calling 
 * MPID_Request_release().
 *
 * MPIDI_CH3_CA_UNPACK_UEBUF_AND_COMPLETE - This is a special case of the 
 * MPIDI_CH3_CA_COMPLETE.  The data for an unexpected
 * eager messaage has been stored into a temporary buffer and needs to be 
 * copied/unpacked into the user buffer before the
 * completion counter can be decremented, etc.
 *
 * MPIDI_CH3_CA_UNPACK_SRBUF_AND_COMPLETE - This is a special case of the 
 * MPIDI_CH3_CA_COMPLETE.  The data from the completing
 * read has been stored into a temporary send/receive buffer and needs to be 
 * copied/unpacked into the user buffer before the
 * completion counter can be decremented, etc.
 *
 * MPIDI_CH3_CA_RELOAD_IOV - This request contains more segments of data than 
 * the IOV or buffer space allow.  Since the
 * previously request operation has completed, the IOV in the request should 
 * be reload at this time.
 *
 * MPIDI_CH3_CA_UNPACK_SRBUF_AND_RELOAD_IOV - This is a special case of the 
 * MPIDI_CH3_CA_RELOAD_IOV.  The data from the
 * completing read operation has been stored into a temporary send/receive 
 * buffer and needs to be copied/unpacked into the user
 * buffer before the IOV is reloaded.
 *
 * MPIDI_CH3_CA_END_CH3 - This not a real action, but rather a marker.  
 * All actions numerically less than MPID_CA_END are defined
 * by channel device.  Any actions numerically greater than MPIDI_CA_END are 
 * internal to the channel instance and must be handled
 * by the channel instance.
 */

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#define HAVE_DEV_COMM_HOOK
#define MPID_Dev_comm_create_hook(comm_) MPIDI_CH3I_Comm_create_hook(comm_)
#define MPID_Dev_comm_destroy_hook(comm_) MPIDI_CH3I_Comm_destroy_hook(comm_)

#define MPIDI_CH3I_Comm_AS_enabled(comm) ((comm)->ch.anysource_enabled)

typedef struct MPIDI_CH3I_comm
{
    int coll_active;        /* TRUE iff this communicator is collectively active */
    int anysource_enabled;  /* TRUE iff this anysource recvs can be posted on this communicator */
    struct MPID_nem_barrier_vars *barrier_vars; /* shared memory variables used in barrier */
    struct MPID_Comm *next; /* next pointer for list of communicators */
    struct MPID_Comm *prev; /* prev pointer for list of communicators */
}
MPIDI_CH3I_comm_t;

#define MPID_DEV_COMM_DECL MPIDI_CH3I_comm_t ch;

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#ifndef HAVE_MPIDI_VCRT
#define HAVE_MPIDI_VCRT
typedef struct MPIDI_VCRT * MPID_VCRT;
typedef struct MPIDI_VC * MPID_VCR;
#endif

#ifndef DEFINED_REQ
#define DEFINED_REQ
#if defined(MPID_USE_SEQUENCE_NUMBERS)
#   define MPIDI_REQUEST_SEQNUM	\
        MPID_Seqnum_t seqnum;
#else
#   define MPIDI_REQUEST_SEQNUM
#endif

185 186 187 188 189 190
enum MPIDI_CH3_Lock_states_e {
    MPIDI_CH3_WIN_LOCK_NONE = 0,
    MPIDI_CH3_WIN_LOCK_REQUESTED,
    MPIDI_CH3_WIN_LOCK_GRANTED
};

191 192 193 194 195 196 197 198
#define MPIDI_DEV_WIN_DECL                                               \
    volatile int my_counter;  /* completion counter for operations       \
                                 targeting this window */                \
    void **base_addrs;     /* array of base addresses of the windows of  \
                              all processes */                           \
    int *disp_units;      /* array of displacement units of all windows */\
    MPI_Win *all_win_handles;    /* array of handles to the window objects\
                                          of all processes */            \
199 200 201
    struct MPIDI_RMA_ops *rma_ops_list_head; /* list of outstanding \
                                                RMA requests */ \
    struct MPIDI_RMA_ops *rma_ops_list_tail; \
202 203 204 205 206 207 208 209 210
    volatile enum MPIDI_CH3_Lock_states_e remote_lock_state;             \
                                /* Indicates the state of the target     \
                                   process' "lock" for passive target    \
                                   RMA. */                               \
    volatile int remote_lock_mode;                                       \
                                /* Indicates the access mode             \
                                   (shared/exclusive) of the target      \
                                   process for passive target RMA. Valid \
                                   whenever state != NONE. */            \
211 212 213 214 215 216 217 218 219 220
    volatile int current_lock_type;   /* current lock type on this window (as target)   \
                              * (none, shared, exclusive) */             \
    volatile int shared_lock_ref_cnt;                                    \
    struct MPIDI_Win_lock_queue volatile *lock_queue;  /* list of unsatisfied locks */  \
                                                                         \
    int *pt_rma_puts_accs;  /* array containing the no. of passive target\
                               puts/accums issued from this process to other \
                               processes. */                             \
    volatile int my_pt_rma_puts_accs;  /* no. of passive target puts/accums  \
                                          that this process has          \
221 222
                                          completed as target */         \
    MPI_Aint *sizes;      /* array of sizes of all windows */            \
223

224 225 226 227 228 229 230 231 232 233 234 235 236
 
#ifdef MPIDI_CH3_WIN_DECL
#define MPID_DEV_WIN_DECL \
MPIDI_DEV_WIN_DECL \
MPIDI_CH3_WIN_DECL
#else
#define MPID_DEV_WIN_DECL \
MPIDI_DEV_WIN_DECL
#endif


typedef struct MPIDI_Request {
    MPIDI_Message_match match;
237
    MPIDI_Message_match mask;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    /* user_buf, user_count, and datatype needed to process 
       rendezvous messages. */
    void        *user_buf;
    int          user_count;
    MPI_Datatype datatype;

    /* segment, segment_first, and segment_size are used when processing 
       non-contiguous datatypes */
    /*    MPID_Segment   segment; */
    struct MPID_Segment *segment_ptr;
    MPIDI_msg_sz_t segment_first;
    MPIDI_msg_sz_t segment_size;

    /* Pointer to datatype for reference counting purposes */
    struct MPID_Datatype * datatype_ptr;

    /* iov and iov_count define the data to be transferred/received.  
256
       iov_offset points to the current head element in the IOV */
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    MPID_IOV iov[MPID_IOV_LIMIT];
    int iov_count;
    int iov_offset;

    /* OnDataAvail is the action to take when data is now available.
       For example, when an operation described by an iov has 
       completed.  This replaces the MPIDI_CA_t (completion action)
       field used through MPICH2 1.0.4. */
    int (*OnDataAvail)( struct MPIDI_VC *, struct MPID_Request *, int * );
    /* OnFinal is used in the following case:
       OnDataAvail is set to a function, and that function has processed
       all of the data.  At that point, the OnDataAvail function can
       reset OnDataAvail to OnFinal.  This is normally used when processing
       non-contiguous data, where there is one more action to take (such
       as a get-response) when processing of the non-contiguous data 
       completes. This value need not be initialized unless OnDataAvail
       is set to a non-null value (and then only in certain cases) */
    int (*OnFinal)( struct MPIDI_VC *, struct MPID_Request *, int * );

    /* tmpbuf and tmpbuf_sz describe temporary storage used for things like 
       unexpected eager messages and packing/unpacking
       buffers.  tmpuf_off is the current offset into the temporary buffer. */
    void          *tmpbuf;
280
    MPIDI_msg_sz_t tmpbuf_off;
281 282 283 284 285 286 287
    MPIDI_msg_sz_t tmpbuf_sz;

    MPIDI_msg_sz_t recv_data_sz;
    MPI_Request    sender_req_id;

    unsigned int   state;
    int            cancel_pending;
288 289 290 291 292 293 294 295 296 297

    /* This field seems to be used for unexpected messages.  Unexpected messages
     * need to go through two steps: matching and receiving the data.  These
     * steps could happen in either order though, so this field is initialized
     * to 2.  It is decremented when the request is matched and also when all of
     * the data is available.  Once it reaches 0 it should be safe to copy from
     * the temporary buffer (if there is one) to the user buffer.  This field is
     * related to, but not quite the same thing as the completion counter (cc). */
    /* MT access should be controlled by the MSGQUEUE CS when the req is still
     * unexpected, exclusive access otherwise */
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    int            recv_pending_count;

    /* The next 8 are for RMA */
    MPI_Op op;
    /* For accumulate, since data is first read into a tmp_buf */
    void *real_user_buf;
    /* For derived datatypes at target */
    struct MPIDI_RMA_dtype_info *dtype_info;
    void *dataloop;
    /* req. handle needed to implement derived datatype gets  */
    MPI_Request request_handle;
    MPI_Win     target_win_handle;
    MPI_Win     source_win_handle;
    int single_op_opt;   /* to indicate a lock-put-unlock optimization case */
    struct MPIDI_Win_lock_queue *lock_queue_entry; /* for single lock-put-unlock optimization */
313
    MPI_Request resp_request_handle; /* Handle for get_accumulate response */
314 315 316 317 318 319 320 321 322

    MPIDI_REQUEST_SEQNUM

    /* Occasionally, when a message cannot be sent, we need to cache the
       data that is required.  The fields above (such as userbuf and tmpbuf)
       are used for the message data.  However, we also need space for the
       message packet. This field provide a generic location for that.
       Question: do we want to make this a link instead of reserving 
       a fixed spot in the request? */
323
    MPIDI_CH3_Pkt_t pending_pkt;
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    struct MPID_Request * next;
} MPIDI_Request;
#define MPID_REQUEST_DECL MPIDI_Request dev;

#if defined(MPIDI_CH3_REQUEST_DECL)
#define MPID_DEV_REQUEST_DECL			\
MPID_REQUEST_DECL				\
MPIDI_CH3_REQUEST_DECL
#else
#define MPID_DEV_REQUEST_DECL			\
MPID_REQUEST_DECL
#endif

#ifdef MPIDI_CH3_REQUEST_KIND_DECL
#define MPID_DEV_REQUEST_KIND_DECL MPIDI_CH3_REQUEST_KIND_DECL
#endif

#endif

/* FIXME: This ifndef test is a temp until mpidpre is cleaned of
   all items that do not belong (e.g., all items not needed by the
   top layers of MPICH2) */
/* FIXME: The progress routines will be made into ch3-common definitions, not
   channel specific.  Channels that need more will need to piggy back or 
   otherwise override */
#ifndef MPID_PROGRESS_STATE_DECL
#if defined(MPIDI_CH3_PROGRESS_STATE_DECL)
#   define MPID_PROGRESS_STATE_DECL MPIDI_CH3_PROGRESS_STATE_DECL
#else
#   define MPID_PROGRESS_STATE_DECL int foo;
#endif
#endif


/* Tell Intercomm create and friends that the GPID routines have been
   implemented */
#define HAVE_GPID_ROUTINES

/* Tell initthread to prepare a private comm_world */
#define MPID_NEEDS_ICOMM_WORLD

365 366 367
/* Tell the RMA code to use a table of RMA functions provided by the 
   ADI */
#define USE_MPID_RMA_TABLE
368
#endif /* !defined(MPICH_MPIDPRE_H_INCLUDED) */