ch3u_rma_sync.c 67.1 KB
Newer Older
1
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
2 3 4 5 6 7 8 9
/*
 *  (C) 2001 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include "mpidimpl.h"
#include "mpidrma.h"

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Notes for memory barriers in RMA synchronizations

   When SHM is allocated for RMA window, we need to add memory berriers at proper
   places in RMA synchronization routines to guarantee the ordering of read/write
   operations, so that any operations after synchronization calls will see the
   correct data.

   There are four kinds of operations involved in the following explanation:

   1. Local loads/stores: any operations happening outside RMA epoch and accessing
      each process's own window memory.

   2. SHM operations: any operations happening inside RMA epoch. They may access
      any processes' window memory, which include direct loads/stores, and
      RMA operations that are internally implemented as direct loads/stores in
      MPI implementation.

   3. PROC_SYNC: synchronzations among processes by sending/recving messages.

   4. MEM_SYNC: a full memory barrier. It ensures the ordering of read/write
      operations on each process.

   (1) FENCE synchronization

              RANK 0                           RANK 1

       (local loads/stores)             (local loads/stores)

           WIN_FENCE {                    WIN_FENCE {
               MEM_SYNC                       MEM_SYNC
               PROC_SYNC -------------------- PROC_SYNC
               MEM_SYNC                       MEM_SYNC
           }                              }

        (SHM operations)                  (SHM operations)

           WIN_FENCE {                     WIN_FENCE {
               MEM_SYNC                        MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
               MEM_SYNC                        MEM_SYNC
           }                               }

      (local loads/stores)              (local loads/stores)

       We need MEM_SYNC before and after PROC_SYNC for both starting WIN_FENCE
       and ending WIN_FENCE, to ensure the ordering between local loads/stores
       and PROC_SYNC in starting WIN_FENCE (and vice versa in ending WIN_FENCE),
       and the ordering between PROC_SYNC and SHM operations in starting WIN_FENCE
       (and vice versa for ending WIN_FENCE).

       In starting WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous local loads/stores to other processes; after PROC_SYNC, each
       process knows that everyone else already exposed their local loads/stores;
       the MEM_SYNC after PROC_SYNC ensures that my following SHM operations will
       happen after PROC_SYNC and will see the latest data on other processes.

       In ending WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous SHM operations to other processes; after PROC_SYNC, each process
       knows everyone else already exposed their SHM operations; the MEM_SYNC
       after PROC_SYNC ensures that my following local loads/stores will happen
       after PROC_SYNC and will see the latest data in my memory region.

   (2) POST-START-COMPLETE-WAIT synchronization

              RANK 0                           RANK 1

                                          (local loads/stores)

           WIN_START {                      WIN_POST {
                                                MEM_SYNC
               PROC_SYNC ---------------------- PROC_SYNC
               MEM_SYNC
           }                                }

         (SHM operations)

           WIN_COMPLETE {                  WIN_WAIT/TEST {
               MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
                                               MEM_SYNC
           }                               }

                                          (local loads/stores)

       We need MEM_SYNC before PROC_SYNC for WIN_POST and WIN_COMPLETE, and
       MEM_SYNC after PROC_SYNC in WIN_START and WIN_WAIT/TEST, to ensure the
       ordering between local loads/stores and PROC_SYNC in WIN_POST (and
       vice versa in WIN_WAIT/TEST), and the ordering between PROC_SYNC and SHM
       operations in WIN_START (and vice versa in WIN_COMPLETE).

       In WIN_POST, the MEM_SYNC before PROC_SYNC essentially exposes previous
       local loads/stores to group of origin processes; after PROC_SYNC, origin
       processes knows all target processes already exposed their local
       loads/stores; in WIN_START, the MEM_SYNC after PROC_SYNC ensures that
       following SHM operations will happen after PROC_SYNC and will see the
       latest data on target processes.

       In WIN_COMPLETE, the MEM_SYNC before PROC_SYNC essentailly exposes previous
       SHM operations to group of target processes; after PROC_SYNC, target
       processes knows all origin process already exposed their SHM operations;
       in WIN_WAIT/TEST, the MEM_SYNC after PROC_SYNC ensures that following local
       loads/stores will happen after PROC_SYNC and will see the latest data in
       my memory region.

   (3) Passive target synchronization

              RANK 0                          RANK 1

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         PROC_SYNC -------------------- PROC_SYNC

         WIN_LOCK (target=1) {
             PROC_SYNC (lock granted)
             MEM_SYNC
         }

         (SHM operations)

         WIN_UNLOCK (target=1) {
             MEM_SYNC
             PROC_SYNC (lock released)
         }

         PROC_SYNC -------------------- PROC_SYNC

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         We need MEM_SYNC after PROC_SYNC in WIN_LOCK, and MEM_SYNC before
         PROC_SYNC in WIN_UNLOCK, to ensure the ordering between SHM operations
         and PROC_SYNC and vice versa.

         In WIN_LOCK, the MEM_SYNC after PROC_SYNC guarantees two things:
         (a) it guarantees that following SHM operations will happen after
         lock is granted; (b) it guarantees that following SHM operations
         will happen after any PROC_SYNC with target before WIN_LOCK is called,
         which means those SHM operations will see the latest data on target
         process.

         In WIN_UNLOCK, the MEM_SYNC before PROC_SYNC also guarantees two
         things: (a) it guarantees that SHM operations will happen before
         lock is released; (b) it guarantees that SHM operations will happen
         before any PROC_SYNC with target after WIN_UNLOCK is returned, which
         means following SHM operations on that target will see the latest data.

         WIN_LOCK_ALL/UNLOCK_ALL are same with WIN_LOCK/UNLOCK.

              RANK 0                          RANK 1

         WIN_LOCK_ALL

         (SHM operations)

         WIN_FLUSH(target=1) {
             MEM_SYNC
         }

         PROC_SYNC ------------------------PROC_SYNC

                                           WIN_LOCK(target=1) {
                                               PROC_SYNC (lock granted)
                                               MEM_SYNC
                                           }

                                           (SHM operations)

                                           WIN_UNLOCK(target=1) {
                                               MEM_SYNC
                                               PROC_SYNC (lock released)
                                           }

         WIN_UNLOCK_ALL

         We need MEM_SYNC in WIN_FLUSH to ensure the ordering between SHM
         operations and PROC_SYNC.

         The MEM_SYNC in WIN_FLUSH guarantees that all SHM operations before
         this WIN_FLUSH will happen before any PROC_SYNC with target after
         this WIN_FLUSH, which means SHM operations on target process after
         PROC_SYNC with origin will see the latest data.
*/

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
=== BEGIN_MPI_T_CVAR_INFO_BLOCK ===

cvars:
    - name        : MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM
      category    : CH3
      type        : int
      default     : 1024
      class       : none
      verbosity   : MPI_T_VERBOSITY_USER_BASIC
      scope       : MPI_T_SCOPE_ALL_EQ
      description : >-
          Specify the threshold of switching the algorithm used in
          FENCE from the basic algorithm to the scalable algorithm.
          The value can be nagative, zero or positive.
          When the number of processes is larger than or equal to
          this value, FENCE will use a scalable algorithm which do
          not use O(P) data structure; when the number of processes
          is smaller than the value, FENCE will use a basic but fast
          algorithm which requires an O(P) data structure.

=== END_MPI_T_CVAR_INFO_BLOCK ===
*/

Xin Zhao's avatar
Xin Zhao committed
236 237 238 239 240 241 242 243
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_lockqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_winlock_getlocallock);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_wincreate_allgather);

MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_set);

void MPIDI_CH3_RMA_Init_sync_pvars(void)
244
{
Xin Zhao's avatar
Xin Zhao committed
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    /* rma_lockqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_lockqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate Lock Queue element (in seconds)");

    /* rma_winlock_getlocallock */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_winlock_getlocallock,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_LOCK:Get local lock (in seconds)");

    /* rma_wincreate_allgather */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_wincreate_allgather,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_CREATE:Allgather (in seconds)");

    /* rma_rmaqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate RMA Queue element (in seconds)");

    /* rma_rmaqueue_set */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_set,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Set fields in RMA Queue element (in seconds)");
289
}
290

291 292
/* These are used to use a common routine to complete lists of RMA
   operations with a single routine, while collecting data that
293 294 295 296
   distinguishes between different synchronization modes.  This is not
   thread-safe; the best choice for thread-safety is to eliminate this
   ability to discriminate between the different types of RMA synchronization.
*/
297

298 299 300
/*
 * These routines provide a default implementation of the MPI RMA operations
 * in terms of the low-level, two-sided channel operations.  A channel
301 302
 * may override these functions, on a per-window basis, by overriding
 * the MPID functions in the RMAFns section of MPID_Win object.
303 304
 */

305 306
#define SYNC_POST_TAG 100

307

308 309 310 311 312
/********************************************************************************/
/* Active Target synchronization (including WIN_FENCE, WIN_POST, WIN_START,     */
/* WIN_COMPLETE, WIN_WAIT, WIN_TEST)                                            */
/********************************************************************************/

313 314 315 316
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_fence
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
317
int MPIDI_Win_fence(int assert, MPID_Win * win_ptr)
318
{
319 320 321
    int i, made_progress = 0;
    int local_completed = 0, remote_completed = 0;
    MPIDI_RMA_Target_t *curr_target = NULL;
Wesley Bland's avatar
Wesley Bland committed
322
    mpir_errflag_t errflag = MPIR_ERR_NONE;
323 324 325
    int comm_size = win_ptr->comm_ptr->local_size;
    int scalable_fence_enabled = 0;
    int *rma_target_marks = NULL;
326
    int mpi_errno = MPI_SUCCESS;
327
    MPIU_CHKLMEM_DECL(1);
328 329 330 331
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_FENCE);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_FENCE);

332 333 334 335
    MPIU_ERR_CHKANDJUMP((win_ptr->states.access_state != MPIDI_RMA_NONE &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED) ||
                        win_ptr->states.exposure_state != MPIDI_RMA_NONE,
James Dinan's avatar
James Dinan committed
336 337
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

338 339 340 341 342
    /* Judge if we should switch to scalable FENCE algorithm */
    if (comm_size >= MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM) {
        scalable_fence_enabled = 1;
    }

343 344 345 346 347
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

348 349
    if (assert & MPI_MODE_NOPRECEDE) {
        if (assert & MPI_MODE_NOSUCCEED) {
350
            goto finish_fence;
351
        }
352 353
        else {
            /* It is possible that there is a IBARRIER in MPI_WIN_FENCE with
354 355
             * MODE_NOPRECEDE not being completed, we let the progress engine
             * to delete its request when it is completed. */
356 357 358 359 360 361 362
            if (win_ptr->fence_sync_req != MPI_REQUEST_NULL) {
                MPID_Request *req_ptr;
                MPID_Request_get_ptr(win_ptr->fence_sync_req, req_ptr);
                MPID_Request_release(req_ptr);
                win_ptr->fence_sync_req = MPI_REQUEST_NULL;
                win_ptr->states.access_state = MPIDI_RMA_NONE;
            }
363

364 365
            if (win_ptr->shm_allocated == TRUE) {
                MPID_Comm *node_comm_ptr = win_ptr->comm_ptr->node_comm;
366

367
                mpi_errno = MPIR_Barrier_impl(node_comm_ptr, &errflag);
368 369
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
370
                MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
371 372
            }

373
            mpi_errno = MPIR_Ibarrier_impl(win_ptr->comm_ptr, &(win_ptr->fence_sync_req));
374 375
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
376

377
            /* Set window access state properly. */
378
            win_ptr->states.access_state = MPIDI_RMA_FENCE_ISSUED;
379
            MPIDI_CH3I_num_active_issued_win++;
380

381
            goto finish_fence;
382
        }
383
    }
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    /* Perform basic algorithm by calling reduce-scatter */
    if (!scalable_fence_enabled) {
        /* If the IBARRIER is not completed, do not need to wait for
         * it since we are going to call reduce-scatter */
        if (win_ptr->fence_sync_req != MPI_REQUEST_NULL) {
            MPID_Request *req_ptr;
            MPID_Request_get_ptr(win_ptr->fence_sync_req, req_ptr);
            MPID_Request_release(req_ptr);
            win_ptr->fence_sync_req = MPI_REQUEST_NULL;
            MPIDI_CH3I_num_active_issued_win--;
            MPIU_Assert(MPIDI_CH3I_num_active_issued_win >= 0);

            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        MPIU_CHKLMEM_MALLOC(rma_target_marks, int *, comm_size * sizeof(int),
                            mpi_errno, "rma_target_marks");
        for (i = 0; i < comm_size; i++)
            rma_target_marks[i] = 0;

        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
                rma_target_marks[curr_target->target_rank] = 1;
                curr_target = curr_target->next;
            }
        }

        win_ptr->at_completion_counter += comm_size;

        mpi_errno = MPIR_Reduce_scatter_block_impl(MPI_IN_PLACE, rma_target_marks, 1,
                                                   MPI_INT, MPI_SUM, win_ptr->comm_ptr, &errflag);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);

        MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
        win_ptr->at_completion_counter -= comm_size;
        win_ptr->at_completion_counter += rma_target_marks[0];
        MPIU_Assert(win_ptr->at_completion_counter >= 0);

        win_ptr->states.access_state = MPIDI_RMA_FENCE_GRANTED;
    }

    /* Set sync_flag in target structs. */
    if (!scalable_fence_enabled) {
        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
                if (curr_target->pending_op_list_head != NULL) {
                    if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH_LOCAL) {
                        curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH_LOCAL;
                    }
                    /* flag is set in order to decrement complete counter on target */
                    curr_target->win_complete_flag = 1;
                }
                else {
                    mpi_errno = send_decr_at_cnt_msg(curr_target->target_rank, win_ptr);
                    if (mpi_errno != MPI_SUCCESS)
                        MPIU_ERR_POP(mpi_errno);
                }
                curr_target = curr_target->next;
            }
        }
    }
    else {
        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
                /* set sync_flag in sync struct */
                if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH) {
                    curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH;
                }
                curr_target = curr_target->next;
458 459
            }
        }
460
    }
461

462 463
    /* Issue out all operations. */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
464 465
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
466

467
    /* Wait for local/remote completion. */
468
    do {
469 470 471
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_win(win_ptr, &local_completed, &remote_completed);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
472 473
        if ((scalable_fence_enabled && !remote_completed) ||
            (!scalable_fence_enabled && !local_completed)) {
474 475 476
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
477
        }
478 479
    } while ((scalable_fence_enabled && !remote_completed) ||
             (!scalable_fence_enabled && !local_completed));
480

481 482
    /* Cleanup all targets on window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
483 484
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
James Dinan's avatar
James Dinan committed
485

486 487 488 489 490
    if (scalable_fence_enabled) {
        mpi_errno = MPIR_Barrier_impl(win_ptr->comm_ptr, &errflag);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
        MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
491

492 493 494 495 496 497 498
        /* Set window access state properly. */
        if (assert & MPI_MODE_NOSUCCEED) {
            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        else {
            win_ptr->states.access_state = MPIDI_RMA_FENCE_GRANTED;
        }
499 500
    }
    else {
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        /* Waiting for all operations targeting at me to be finished. */
        while (win_ptr->at_completion_counter) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }

        if (assert & MPI_MODE_NOSUCCEED) {
            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        else {
            /* Prepare for the next possible epoch */
            mpi_errno = MPIR_Ibarrier_impl(win_ptr->comm_ptr, &(win_ptr->fence_sync_req));
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
            MPIDI_CH3I_num_active_issued_win++;
            win_ptr->states.access_state = MPIDI_RMA_FENCE_ISSUED;

            if (win_ptr->shm_allocated == TRUE) {
                MPID_Comm *node_comm_ptr = win_ptr->comm_ptr->node_comm;
                mpi_errno = MPIR_Barrier_impl(node_comm_ptr, &errflag);
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
                MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
            }
        }
527 528
    }

529
  finish_fence:
530 531 532
    /* Make sure that all targets are freed. */
    MPIU_Assert(win_ptr->non_empty_slots == 0);

533 534 535 536 537 538 539 540 541
    if (assert & MPI_MODE_NOPRECEDE) {
        /* BEGINNING synchronization: the following counter should be zero. */
        MPIU_Assert(win_ptr->accumulated_ops_cnt == 0);
    }
    else {
        /* ENDING synchronization: correctly decrement the following counter. */
        win_ptr->accumulated_ops_cnt = 0;
    }

542 543
    MPIU_Assert(win_ptr->active_req_cnt == 0);

544 545 546 547 548
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

549
  fn_exit:
550
    MPIU_CHKLMEM_FREEALL();
551 552 553
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_FENCE);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
554
  fn_fail:
555 556 557 558 559 560
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}


#undef FUNCNAME
561
#define FUNCNAME MPIDI_Win_post
562 563
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
564
int MPIDI_Win_post(MPID_Group * post_grp_ptr, int assert, MPID_Win * win_ptr)
565
{
566
    int *post_ranks_in_win_grp;
567
    int mpi_errno = MPI_SUCCESS;
568
    MPIU_CHKLMEM_DECL(3);
569
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_POST);
570

571
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_POST);
572

573
    /* Note that here we cannot distinguish if this exposure epoch is overlapped
574 575 576
     * with an exposure epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * exposure epoch is overlapped with another exposure epoch of PSCW. */
577
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_NONE,
578
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
579

580 581 582
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
583 584
    }

585
    /* Set window exposure state properly. */
586 587 588 589
    win_ptr->states.exposure_state = MPIDI_RMA_PSCW_EXPO;

    win_ptr->at_completion_counter += post_grp_ptr->size;

590 591 592
    if ((assert & MPI_MODE_NOCHECK) == 0) {
        MPI_Request *req;
        MPI_Status *status;
593 594
        int i, post_grp_size, dst, rank;
        MPID_Comm *win_comm_ptr;
595

596 597
        /* NOCHECK not specified. We need to notify the source
         * processes that Post has been called. */
598

599
        post_grp_size = post_grp_ptr->size;
600 601
        win_comm_ptr = win_ptr->comm_ptr;
        rank = win_ptr->comm_ptr->rank;
602

603 604 605
        MPIU_CHKLMEM_MALLOC(post_ranks_in_win_grp, int *,
                            post_grp_size * sizeof(int), mpi_errno, "post_ranks_in_win_grp");
        mpi_errno = fill_ranks_in_win_grp(win_ptr, post_grp_ptr, post_ranks_in_win_grp);
606 607
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
608 609 610 611 612

        MPIU_CHKLMEM_MALLOC(req, MPI_Request *, post_grp_size * sizeof(MPI_Request),
                            mpi_errno, "req");
        MPIU_CHKLMEM_MALLOC(status, MPI_Status *, post_grp_size * sizeof(MPI_Status),
                            mpi_errno, "status");
613

614 615
        /* Send a 0-byte message to the source processes */
        for (i = 0; i < post_grp_size; i++) {
616
            dst = post_ranks_in_win_grp[i];
617

618 619 620 621
            if (dst != rank) {
                MPID_Request *req_ptr;
                mpi_errno = MPID_Isend(&i, 0, MPI_INT, dst, SYNC_POST_TAG, win_comm_ptr,
                                       MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
622 623
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
624 625 626 627 628
                req[i] = req_ptr->handle;
            }
            else {
                req[i] = MPI_REQUEST_NULL;
            }
629
        }
630

631 632 633 634 635 636 637 638 639 640 641 642
        mpi_errno = MPIR_Waitall_impl(post_grp_size, req, status);
        if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
            MPIU_ERR_POP(mpi_errno);

        /* --BEGIN ERROR HANDLING-- */
        if (mpi_errno == MPI_ERR_IN_STATUS) {
            for (i = 0; i < post_grp_size; i++) {
                if (status[i].MPI_ERROR != MPI_SUCCESS) {
                    mpi_errno = status[i].MPI_ERROR;
                    MPIU_ERR_POP(mpi_errno);
                }
            }
643
        }
644
        /* --END ERROR HANDLING-- */
645
    }
646

647
  fn_exit:
648 649
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_POST);
650 651
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
652
  fn_fail:
653 654 655 656
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}

657

658 659 660 661 662
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_start
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
int MPIDI_Win_start(MPID_Group * group_ptr, int assert, MPID_Win * win_ptr)
663
{
664
    int mpi_errno = MPI_SUCCESS;
665
    MPIU_CHKLMEM_DECL(2);
666 667
    MPIU_CHKPMEM_DECL(2);
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_START);
668

669
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_START);
670

671
    /* Note that here we cannot distinguish if this access epoch is overlapped
672 673 674 675
     * with an access epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * access epoch is overlapped with another access epoch of PSCW or Passive
     * Target. */
676 677 678 679
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
680

681
    win_ptr->start_grp_size = group_ptr->size;
682

683 684 685 686 687
    MPIU_CHKPMEM_MALLOC(win_ptr->start_ranks_in_win_grp, int *,
                        win_ptr->start_grp_size * sizeof(int),
                        mpi_errno, "win_ptr->start_ranks_in_win_grp");

    mpi_errno = fill_ranks_in_win_grp(win_ptr, group_ptr, win_ptr->start_ranks_in_win_grp);
688 689
    if (mpi_errno)
        MPIU_ERR_POP(mpi_errno);
690

691
    if ((assert & MPI_MODE_NOCHECK) == 0) {
Xin Zhao's avatar
Xin Zhao committed
692
        int i, intra_cnt;
693 694 695 696 697 698
        MPI_Request *intra_start_req = NULL;
        MPI_Status *intra_start_status = NULL;
        MPID_Comm *comm_ptr = win_ptr->comm_ptr;
        int rank = comm_ptr->rank;

        /* wait for messages from local processes */
699

700 701 702 703
        /* post IRECVs */
        MPIU_CHKPMEM_MALLOC(win_ptr->start_req, MPI_Request *,
                            win_ptr->start_grp_size * sizeof(MPI_Request),
                            mpi_errno, "win_ptr->start_req");
704

705 706 707
        if (win_ptr->shm_allocated == TRUE) {
            int node_comm_size = comm_ptr->node_comm->local_size;
            MPIU_CHKLMEM_MALLOC(intra_start_req, MPI_Request *,
708
                                node_comm_size * sizeof(MPI_Request), mpi_errno, "intra_start_req");
709 710 711 712
            MPIU_CHKLMEM_MALLOC(intra_start_status, MPI_Status *,
                                node_comm_size * sizeof(MPI_Status),
                                mpi_errno, "intra_start_status");
        }
713

714 715
        intra_cnt = 0;
        for (i = 0; i < win_ptr->start_grp_size; i++) {
716
            MPID_Request *req_ptr;
717 718
            MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
            int src = win_ptr->start_ranks_in_win_grp[i];
719

720 721 722
            if (src != rank) {
                MPIDI_Comm_get_vc(comm_ptr, rank, &orig_vc);
                MPIDI_Comm_get_vc(comm_ptr, src, &target_vc);
723

724 725
                mpi_errno = MPID_Irecv(NULL, 0, MPI_INT, src, SYNC_POST_TAG,
                                       comm_ptr, MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
726 727
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
728

729
                if (win_ptr->shm_allocated == TRUE && orig_vc->node_id == target_vc->node_id) {
730 731 732 733 734 735 736 737 738
                    intra_start_req[intra_cnt++] = req_ptr->handle;
                    win_ptr->start_req[i] = MPI_REQUEST_NULL;
                }
                else {
                    win_ptr->start_req[i] = req_ptr->handle;
                }
            }
            else {
                win_ptr->start_req[i] = MPI_REQUEST_NULL;
739
            }
740
        }
741

742 743 744 745 746 747 748 749 750 751 752 753
        /* for targets on SHM, waiting until their IRECVs to be finished */
        if (intra_cnt) {
            mpi_errno = MPIR_Waitall_impl(intra_cnt, intra_start_req, intra_start_status);
            if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
                MPIU_ERR_POP(mpi_errno);
            /* --BEGIN ERROR HANDLING-- */
            if (mpi_errno == MPI_ERR_IN_STATUS) {
                for (i = 0; i < intra_cnt; i++) {
                    if (intra_start_status[i].MPI_ERROR != MPI_SUCCESS) {
                        mpi_errno = intra_start_status[i].MPI_ERROR;
                        MPIU_ERR_POP(mpi_errno);
                    }
754
                }
755
            }
756
            /* --END ERROR HANDLING-- */
757
        }
758 759
    }

760
  finish_start:
761
    /* Set window access state properly. */
762
    win_ptr->states.access_state = MPIDI_RMA_PSCW_ISSUED;
763
    MPIDI_CH3I_num_active_issued_win++;
764

765 766 767
    /* BEGINNING synchronization: the following counter should be zero. */
    MPIU_Assert(win_ptr->accumulated_ops_cnt == 0);

768
    MPIU_Assert(win_ptr->active_req_cnt == 0);
769

770 771 772 773 774
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

775
  fn_exit:
776 777 778
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_START);
    return mpi_errno;
779
  fn_fail:
780 781
    MPIU_CHKPMEM_REAP();
    goto fn_exit;
782 783 784
}


785

786
#undef FUNCNAME
787
#define FUNCNAME MPIDI_Win_complete
788 789
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
790
int MPIDI_Win_complete(MPID_Win * win_ptr)
791
{
792
    int mpi_errno = MPI_SUCCESS;
793 794 795 796 797
    int i, dst, rank = win_ptr->comm_ptr->rank;
    int local_completed = 0, remote_completed = 0;
    MPID_Comm *win_comm_ptr = win_ptr->comm_ptr;
    MPIDI_RMA_Target_t *curr_target;
    int made_progress;
798
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_COMPLETE);
799

800
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_COMPLETE);
801

802 803 804
    /* Access epochs on the same window must be disjoint. */
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PSCW_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED,
James Dinan's avatar
James Dinan committed
805 806
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

807 808 809 810 811
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

812 813 814 815 816 817
    if (win_ptr->states.access_state == MPIDI_RMA_PSCW_ISSUED) {
        while (win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
818 819
    }

820 821 822 823 824 825
    for (i = 0; i < win_ptr->start_grp_size; i++) {
        dst = win_ptr->start_ranks_in_win_grp[i];
        if (dst == rank) {
            win_ptr->at_completion_counter--;
            MPIU_Assert(win_ptr->at_completion_counter >= 0);
            continue;
826
        }
827

828
        if (win_comm_ptr->local_size <= win_ptr->num_slots)
829
            curr_target = win_ptr->slots[dst].target_list_head;
830
        else {
831
            curr_target = win_ptr->slots[dst % win_ptr->num_slots].target_list_head;
832 833 834
            while (curr_target != NULL && curr_target->target_rank != dst)
                curr_target = curr_target->next;
        }
835

836 837
        if (curr_target != NULL) {
            /* set sync_flag in sync struct */
838 839
            if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH_LOCAL) {
                curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH_LOCAL;
840 841
            }
            curr_target->win_complete_flag = 1;
842 843
        }
        else {
844 845
            /* FIXME: do we need to wait for remote completion? */
            mpi_errno = send_decr_at_cnt_msg(dst, win_ptr);
846 847
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
848
        }
849 850
    }

851 852
    /* issue out all operations */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
853 854
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
855 856 857

    /* wait until all slots are empty */
    do {
858 859 860
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_win(win_ptr, &local_completed, &remote_completed);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
861
        if (!local_completed) {
862 863 864
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
865
        }
866
    } while (!local_completed);
867

868 869
    /* Cleanup all targets on this window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
870 871
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
872

873
  finish_complete:
874
    /* Set window access state properly. */
875
    win_ptr->states.access_state = MPIDI_RMA_NONE;
876

877 878 879 880
    /* free start group stored in window */
    MPIU_Free(win_ptr->start_ranks_in_win_grp);
    win_ptr->start_ranks_in_win_grp = NULL;
    MPIU_Assert(win_ptr->start_req == NULL);
881

882 883 884
    /* Make sure that all targets are freed. */
    MPIU_Assert(win_ptr->non_empty_slots == 0);

885 886 887
    /* ENDING synchronization: correctly decrement the following counter. */
    win_ptr->accumulated_ops_cnt = 0;

888
    MPIU_Assert(win_ptr->active_req_cnt == 0);
889

890 891
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_COMPLETE);
892
    return mpi_errno;
893 894 895 896
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
897
}
898

899 900


901
#undef FUNCNAME
902
#define FUNCNAME MPIDI_Win_wait
903 904
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
905
int MPIDI_Win_wait(MPID_Win * win_ptr)
906
{
907 908 909 910
    int mpi_errno = MPI_SUCCESS;
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_WAIT);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_WAIT);
911

912
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
913
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
914

915
    /* wait for all operations from other processes to finish */
916 917 918 919
    while (win_ptr->at_completion_counter) {
        mpi_errno = wait_progress_engine();
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
920 921
    }

922
  finish_wait:
923
    /* Set window exposure state properly. */
924 925
    win_ptr->states.exposure_state = MPIDI_RMA_NONE;

926 927 928 929 930
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

931 932
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_WAIT);
933
    return mpi_errno;
934 935 936 937
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
938 939
}

940

941
#undef FUNCNAME
942
#define FUNCNAME MPIDI_Win_test
943 944
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
945
int MPIDI_Win_test(MPID_Win * win_ptr, int *flag)
946 947
{
    int mpi_errno = MPI_SUCCESS;
948
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_TEST);
949

950
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_TEST);
951

952
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
953
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
954

955 956
    mpi_errno = MPID_Progress_test();
    if (mpi_errno != MPI_SUCCESS) {
957
        MPIU_ERR_POP(mpi_errno);
958 959
    }

960 961
    *flag = (win_ptr->at_completion_counter) ? 0 : 1;
    if (*flag) {
962
        /* Set window exposure state properly. */
963 964
        win_ptr->states.exposure_state = MPIDI_RMA_NONE;

965 966 967
        /* Ensure ordering of load/store operations. */
        if (win_ptr->shm_allocated == TRUE) {
            OPA_read_write_barrier();
968 969 970
        }
    }

971
  fn_exit:
972
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_TEST);
973
    return mpi_errno;
974
    /* --BEGIN ERROR HANDLING-- */
975
  fn_fail:
976
    goto fn_exit;
977
    /* --END ERROR HANDLING-- */
978 979
}

980

981 982 983 984 985 986
/********************************************************************************/
/* Passive Target synchronization (including WIN_LOCK, WIN_UNLOCK, WIN_FLUSH,   */
/* WIN_FLUSH_LOCAL, WIN_LOCK_ALL, WIN_UNLOCK_ALL, WIN_FLUSH_ALL,                */
/* WIN_FLUSH_LOCAL_ALL, WIN_SYNC)                                               */
/********************************************************************************/

987
#undef FUNCNAME
988
#define FUNCNAME MPIDI_Win_lock
989 990
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
991
int MPIDI_Win_lock(int lock_type, int dest, int assert, MPID_Win * win_ptr)
992
{
993 994 995 996 997
    int made_progress = 0;
    int shm_target = FALSE;
    int rank = win_ptr->comm_ptr->rank;
    MPIDI_RMA_Target_t *target = NULL;
    MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
998
    int mpi_errno = MPI_SUCCESS;
999
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_LOCK);
1000

1001
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_LOCK);
1002

1003
    /* Note that here we cannot distinguish if this access epoch is overlapped
1004 1005 1006 1007
     * with an access epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * access epoch is overlapped with another access epoch of PSCW or Passive
     * Target. */
1008 1009 1010 1011 1012 1013 1014
    if (win_ptr->lock_epoch_count == 0) {
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
    else {
Xin Zhao's avatar
Xin Zhao committed
1015
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PER_TARGET,
1016 1017
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
1018

1019 1020 1021
    if (dest != MPI_PROC_NULL) {
        /* check if we lock the same target window more than once. */
        mpi_errno = MPIDI_CH3I_Win_find_target(win_ptr, dest, &target);
1022 1023
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
1024 1025
        MPIU_ERR_CHKANDJUMP(target != NULL, mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
1026

1027
    /* Error handling is finished. */
1028

1029
    if (win_ptr->lock_epoch_count == 0) {
1030
        /* Set window access state properly. */
1031
        win_ptr->states.access_state = MPIDI_RMA_PER_TARGET;
1032
        MPIDI_CH3I_num_passive_win++;
1033 1034
    }
    win_ptr->lock_epoch_count++;
1035

1036
    if (dest == MPI_PROC_NULL)
1037
        goto finish_lock;
1038

1039 1040 1041 1042 1043
    if (win_ptr->shm_allocated == TRUE) {
        MPIDI_Comm_get_vc(win_ptr->comm_ptr, rank, &orig_vc);
        MPIDI_Comm_get_vc(win_ptr->comm_ptr, dest, &target_vc);
        if (orig_vc->node_id == target_vc->node_id)
            shm_target = TRUE;
1044
    }
1045

1046 1047
    /* Create a new target. */
    mpi_errno = MPIDI_CH3I_Win_create_target