ch3u_rma_sync.c 66.1 KB
Newer Older
1
/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil ; -*- */
2 3 4 5 6 7 8 9
/*
 *  (C) 2001 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

#include "mpidimpl.h"
#include "mpidrma.h"

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/* Notes for memory barriers in RMA synchronizations

   When SHM is allocated for RMA window, we need to add memory berriers at proper
   places in RMA synchronization routines to guarantee the ordering of read/write
   operations, so that any operations after synchronization calls will see the
   correct data.

   There are four kinds of operations involved in the following explanation:

   1. Local loads/stores: any operations happening outside RMA epoch and accessing
      each process's own window memory.

   2. SHM operations: any operations happening inside RMA epoch. They may access
      any processes' window memory, which include direct loads/stores, and
      RMA operations that are internally implemented as direct loads/stores in
      MPI implementation.

   3. PROC_SYNC: synchronzations among processes by sending/recving messages.

   4. MEM_SYNC: a full memory barrier. It ensures the ordering of read/write
      operations on each process.

   (1) FENCE synchronization

              RANK 0                           RANK 1

       (local loads/stores)             (local loads/stores)

           WIN_FENCE {                    WIN_FENCE {
               MEM_SYNC                       MEM_SYNC
               PROC_SYNC -------------------- PROC_SYNC
               MEM_SYNC                       MEM_SYNC
           }                              }

        (SHM operations)                  (SHM operations)

           WIN_FENCE {                     WIN_FENCE {
               MEM_SYNC                        MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
               MEM_SYNC                        MEM_SYNC
           }                               }

      (local loads/stores)              (local loads/stores)

       We need MEM_SYNC before and after PROC_SYNC for both starting WIN_FENCE
       and ending WIN_FENCE, to ensure the ordering between local loads/stores
       and PROC_SYNC in starting WIN_FENCE (and vice versa in ending WIN_FENCE),
       and the ordering between PROC_SYNC and SHM operations in starting WIN_FENCE
       (and vice versa for ending WIN_FENCE).

       In starting WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous local loads/stores to other processes; after PROC_SYNC, each
       process knows that everyone else already exposed their local loads/stores;
       the MEM_SYNC after PROC_SYNC ensures that my following SHM operations will
       happen after PROC_SYNC and will see the latest data on other processes.

       In ending WIN_FENCE, the MEM_SYNC before PROC_SYNC essentially exposes
       previous SHM operations to other processes; after PROC_SYNC, each process
       knows everyone else already exposed their SHM operations; the MEM_SYNC
       after PROC_SYNC ensures that my following local loads/stores will happen
       after PROC_SYNC and will see the latest data in my memory region.

   (2) POST-START-COMPLETE-WAIT synchronization

              RANK 0                           RANK 1

                                          (local loads/stores)

           WIN_START {                      WIN_POST {
                                                MEM_SYNC
               PROC_SYNC ---------------------- PROC_SYNC
               MEM_SYNC
           }                                }

         (SHM operations)

           WIN_COMPLETE {                  WIN_WAIT/TEST {
               MEM_SYNC
               PROC_SYNC --------------------- PROC_SYNC
                                               MEM_SYNC
           }                               }

                                          (local loads/stores)

       We need MEM_SYNC before PROC_SYNC for WIN_POST and WIN_COMPLETE, and
       MEM_SYNC after PROC_SYNC in WIN_START and WIN_WAIT/TEST, to ensure the
       ordering between local loads/stores and PROC_SYNC in WIN_POST (and
       vice versa in WIN_WAIT/TEST), and the ordering between PROC_SYNC and SHM
       operations in WIN_START (and vice versa in WIN_COMPLETE).

       In WIN_POST, the MEM_SYNC before PROC_SYNC essentially exposes previous
       local loads/stores to group of origin processes; after PROC_SYNC, origin
       processes knows all target processes already exposed their local
       loads/stores; in WIN_START, the MEM_SYNC after PROC_SYNC ensures that
       following SHM operations will happen after PROC_SYNC and will see the
       latest data on target processes.

       In WIN_COMPLETE, the MEM_SYNC before PROC_SYNC essentailly exposes previous
       SHM operations to group of target processes; after PROC_SYNC, target
       processes knows all origin process already exposed their SHM operations;
       in WIN_WAIT/TEST, the MEM_SYNC after PROC_SYNC ensures that following local
       loads/stores will happen after PROC_SYNC and will see the latest data in
       my memory region.

   (3) Passive target synchronization

              RANK 0                          RANK 1

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         PROC_SYNC -------------------- PROC_SYNC

         WIN_LOCK (target=1) {
             PROC_SYNC (lock granted)
             MEM_SYNC
         }

         (SHM operations)

         WIN_UNLOCK (target=1) {
             MEM_SYNC
             PROC_SYNC (lock released)
         }

         PROC_SYNC -------------------- PROC_SYNC

                                        WIN_LOCK(target=1) {
                                            PROC_SYNC (lock granted)
                                            MEM_SYNC
                                        }

                                        (SHM operations)

                                        WIN_UNLOCK(target=1) {
                                            MEM_SYNC
                                            PROC_SYNC (lock released)
                                        }

         We need MEM_SYNC after PROC_SYNC in WIN_LOCK, and MEM_SYNC before
         PROC_SYNC in WIN_UNLOCK, to ensure the ordering between SHM operations
         and PROC_SYNC and vice versa.

         In WIN_LOCK, the MEM_SYNC after PROC_SYNC guarantees two things:
         (a) it guarantees that following SHM operations will happen after
         lock is granted; (b) it guarantees that following SHM operations
         will happen after any PROC_SYNC with target before WIN_LOCK is called,
         which means those SHM operations will see the latest data on target
         process.

         In WIN_UNLOCK, the MEM_SYNC before PROC_SYNC also guarantees two
         things: (a) it guarantees that SHM operations will happen before
         lock is released; (b) it guarantees that SHM operations will happen
         before any PROC_SYNC with target after WIN_UNLOCK is returned, which
         means following SHM operations on that target will see the latest data.

         WIN_LOCK_ALL/UNLOCK_ALL are same with WIN_LOCK/UNLOCK.

              RANK 0                          RANK 1

         WIN_LOCK_ALL

         (SHM operations)

         WIN_FLUSH(target=1) {
             MEM_SYNC
         }

         PROC_SYNC ------------------------PROC_SYNC

                                           WIN_LOCK(target=1) {
                                               PROC_SYNC (lock granted)
                                               MEM_SYNC
                                           }

                                           (SHM operations)

                                           WIN_UNLOCK(target=1) {
                                               MEM_SYNC
                                               PROC_SYNC (lock released)
                                           }

         WIN_UNLOCK_ALL

         We need MEM_SYNC in WIN_FLUSH to ensure the ordering between SHM
         operations and PROC_SYNC.

         The MEM_SYNC in WIN_FLUSH guarantees that all SHM operations before
         this WIN_FLUSH will happen before any PROC_SYNC with target after
         this WIN_FLUSH, which means SHM operations on target process after
         PROC_SYNC with origin will see the latest data.
*/

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
=== BEGIN_MPI_T_CVAR_INFO_BLOCK ===

cvars:
    - name        : MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM
      category    : CH3
      type        : int
      default     : 1024
      class       : none
      verbosity   : MPI_T_VERBOSITY_USER_BASIC
      scope       : MPI_T_SCOPE_ALL_EQ
      description : >-
          Specify the threshold of switching the algorithm used in
          FENCE from the basic algorithm to the scalable algorithm.
          The value can be nagative, zero or positive.
          When the number of processes is larger than or equal to
          this value, FENCE will use a scalable algorithm which do
          not use O(P) data structure; when the number of processes
          is smaller than the value, FENCE will use a basic but fast
          algorithm which requires an O(P) data structure.

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    - name        : MPIR_CVAR_CH3_RMA_DELAY_ISSUING_FOR_PIGGYBACKING
      category    : CH3
      type        : int
      default     : 0
      class       : none
      verbosity   : MPI_T_VERBOSITY_USER_BASIC
      scope       : MPI_T_SCOPE_ALL_EQ
      description : >-
        Specify if delay issuing of RMA operations for piggybacking
        LOCK/UNLOCK/FLUSH is enabled. It can be either 0 or 1. When
        it is set to 1, the issuing of LOCK message is delayed until
        origin process see the first RMA operation and piggyback
        LOCK with that operation, and the origin process always keeps
        the current last operation until the ending synchronization
        call in order to piggyback UNLOCK/FLUSH with that operation.
        When it is set to 0, in WIN_LOCK/UNLOCK case, the LOCK message
        is sent out as early as possible, in WIN_LOCK_ALL/UNLOCK_ALL
        case, the origin process still tries to piggyback LOCK message
        with the first operation; for UNLOCK/FLUSH message, the origin
        process no longer keeps the current last operation but only
        piggyback UNLOCK/FLUSH if there is an operation avaliable in
        the ending synchronization call.

256 257 258
=== END_MPI_T_CVAR_INFO_BLOCK ===
*/

Xin Zhao's avatar
Xin Zhao committed
259 260 261 262 263 264 265 266
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_lockqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_winlock_getlocallock);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_wincreate_allgather);

MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_alloc);
MPIR_T_PVAR_DOUBLE_TIMER_DECL(RMA, rma_rmaqueue_set);

void MPIDI_CH3_RMA_Init_sync_pvars(void)
267
{
Xin Zhao's avatar
Xin Zhao committed
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    /* rma_lockqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_lockqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate Lock Queue element (in seconds)");

    /* rma_winlock_getlocallock */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_winlock_getlocallock,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_LOCK:Get local lock (in seconds)");

    /* rma_wincreate_allgather */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_wincreate_allgather,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "WIN_CREATE:Allgather (in seconds)");

    /* rma_rmaqueue_alloc */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_alloc,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Allocate RMA Queue element (in seconds)");

    /* rma_rmaqueue_set */
    MPIR_T_PVAR_TIMER_REGISTER_STATIC(RMA,
                                      MPI_DOUBLE,
                                      rma_rmaqueue_set,
                                      MPI_T_VERBOSITY_MPIDEV_DETAIL,
                                      MPI_T_BIND_NO_OBJECT,
                                      MPIR_T_PVAR_FLAG_READONLY,
                                      "RMA", "Set fields in RMA Queue element (in seconds)");
312
}
313

314 315
/* These are used to use a common routine to complete lists of RMA
   operations with a single routine, while collecting data that
316 317 318 319
   distinguishes between different synchronization modes.  This is not
   thread-safe; the best choice for thread-safety is to eliminate this
   ability to discriminate between the different types of RMA synchronization.
*/
320

321 322 323
/*
 * These routines provide a default implementation of the MPI RMA operations
 * in terms of the low-level, two-sided channel operations.  A channel
324 325
 * may override these functions, on a per-window basis, by overriding
 * the MPID functions in the RMAFns section of MPID_Win object.
326 327
 */

328 329
#define SYNC_POST_TAG 100

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
#undef FUNCNAME
#define FUNCNAME flush_local_all
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
static inline int flush_local_all(MPID_Win * win_ptr)
{
    int i, made_progress = 0;
    MPIDI_RMA_Target_t *curr_target = NULL;
    int local_completed = 0, remote_completed = 0;
    int total_remote_complete_cnt = 0, total_local_complete_cnt = 0;
    int curr_remote_complete_cnt = 0, curr_local_complete_cnt = 0;
    int mpi_errno = MPI_SUCCESS;
    MPIDI_STATE_DECL(MPID_STATE_FLUSH_LOCAL_ALL);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_FLUSH_LOCAL_ALL);

    /* Set sync_flag in sync struct. */
    for (i = 0; i < win_ptr->num_slots; i++) {
        curr_target = win_ptr->slots[i].target_list_head;
        while (curr_target != NULL) {
            if (curr_target->sync.upgrade_flush_local) {
                if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH) {
                    curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH;
                }
                total_remote_complete_cnt++;
            }
            else {
                if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH_LOCAL) {
                    curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH_LOCAL;
                }
                total_local_complete_cnt++;
            }

            curr_target = curr_target->next;
        }
    }

    /* issue out all operations. */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);

    /* wait for remote completion for those targets that disable flush_local,
     * and wait for local completion for other targets */
    do {
        curr_local_complete_cnt = 0, curr_remote_complete_cnt = 0;
        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
                mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_target(win_ptr, curr_target);
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);

                MPIDI_CH3I_RMA_ops_completion(win_ptr, curr_target, local_completed,
                                              remote_completed);

                if (curr_target->sync.upgrade_flush_local) {
                    if (remote_completed) {
                        curr_remote_complete_cnt++;
                    }
                }
                else {
                    if (local_completed) {
                        curr_local_complete_cnt++;
                    }
                }
                curr_target = curr_target->next;
            }
        }

        if (curr_remote_complete_cnt < total_remote_complete_cnt ||
            curr_local_complete_cnt < total_local_complete_cnt) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
    } while (curr_remote_complete_cnt < total_remote_complete_cnt ||
             curr_local_complete_cnt < total_local_complete_cnt);

  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_FLUSH_LOCAL_ALL);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}

#undef FUNCNAME
#define FUNCNAME flush_all
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
static inline int flush_all(MPID_Win * win_ptr)
{
    int i, made_progress = 0;
    int local_completed = 0, remote_completed = 0;
    MPIDI_RMA_Target_t *curr_target = NULL;
    int mpi_errno = MPI_SUCCESS;
    MPIDI_STATE_DECL(MPID_STATE_FLUSH_ALL);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_FLUSH_ALL);

    /* Set sync_flag in sync struct. */
    for (i = 0; i < win_ptr->num_slots; i++) {
        curr_target = win_ptr->slots[i].target_list_head;
        while (curr_target != NULL) {
            if (curr_target->sync.sync_flag < MPIDI_RMA_SYNC_FLUSH) {
                curr_target->sync.sync_flag = MPIDI_RMA_SYNC_FLUSH;
            }

            curr_target = curr_target->next;
        }
    }

    /* Issue out all operations. */
    mpi_errno = MPIDI_CH3I_RMA_Make_progress_win(win_ptr, &made_progress);
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);

    /* Wait for remote completion. */
    do {
        mpi_errno = MPIDI_CH3I_RMA_Cleanup_ops_win(win_ptr, &local_completed, &remote_completed);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
        if (!remote_completed) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
    } while (!remote_completed);

  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_FLUSH_ALL);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}
469

470 471 472 473 474
/********************************************************************************/
/* Active Target synchronization (including WIN_FENCE, WIN_POST, WIN_START,     */
/* WIN_COMPLETE, WIN_WAIT, WIN_TEST)                                            */
/********************************************************************************/

475 476 477 478
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_fence
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
479
int MPIDI_Win_fence(int assert, MPID_Win * win_ptr)
480
{
481
    int i;
482
    MPIDI_RMA_Target_t *curr_target = NULL;
Wesley Bland's avatar
Wesley Bland committed
483
    mpir_errflag_t errflag = MPIR_ERR_NONE;
484 485 486
    int comm_size = win_ptr->comm_ptr->local_size;
    int scalable_fence_enabled = 0;
    int *rma_target_marks = NULL;
487
    int mpi_errno = MPI_SUCCESS;
488
    MPIU_CHKLMEM_DECL(1);
489 490 491 492
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_FENCE);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_FENCE);

493 494 495 496
    MPIU_ERR_CHKANDJUMP((win_ptr->states.access_state != MPIDI_RMA_NONE &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                         win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED) ||
                        win_ptr->states.exposure_state != MPIDI_RMA_NONE,
James Dinan's avatar
James Dinan committed
497 498
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

499 500 501 502 503
    /* Judge if we should switch to scalable FENCE algorithm */
    if (comm_size >= MPIR_CVAR_CH3_RMA_SCALABLE_FENCE_PROCESS_NUM) {
        scalable_fence_enabled = 1;
    }

504 505 506 507 508
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

509 510
    if (assert & MPI_MODE_NOPRECEDE) {
        if (assert & MPI_MODE_NOSUCCEED) {
511
            goto finish_fence;
512
        }
513 514
        else {
            /* It is possible that there is a IBARRIER in MPI_WIN_FENCE with
515 516
             * MODE_NOPRECEDE not being completed, we let the progress engine
             * to delete its request when it is completed. */
517 518 519 520 521 522
            if (win_ptr->fence_sync_req != MPI_REQUEST_NULL) {
                MPID_Request *req_ptr;
                MPID_Request_get_ptr(win_ptr->fence_sync_req, req_ptr);
                MPID_Request_release(req_ptr);
                win_ptr->fence_sync_req = MPI_REQUEST_NULL;
                win_ptr->states.access_state = MPIDI_RMA_NONE;
523 524
                MPIDI_CH3I_num_active_issued_win--;
                MPIU_Assert(MPIDI_CH3I_num_active_issued_win >= 0);
525
            }
526

527 528
            if (win_ptr->shm_allocated == TRUE) {
                MPID_Comm *node_comm_ptr = win_ptr->comm_ptr->node_comm;
529

530
                mpi_errno = MPIR_Barrier_impl(node_comm_ptr, &errflag);
531 532
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
533
                MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
534 535
            }

536
            mpi_errno = MPIR_Ibarrier_impl(win_ptr->comm_ptr, &(win_ptr->fence_sync_req));
537 538
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
539

540
            /* Set window access state properly. */
541
            win_ptr->states.access_state = MPIDI_RMA_FENCE_ISSUED;
542
            MPIDI_CH3I_num_active_issued_win++;
543

544
            goto finish_fence;
545
        }
546
    }
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    /* Perform basic algorithm by calling reduce-scatter */
    if (!scalable_fence_enabled) {
        /* If the IBARRIER is not completed, do not need to wait for
         * it since we are going to call reduce-scatter */
        if (win_ptr->fence_sync_req != MPI_REQUEST_NULL) {
            MPID_Request *req_ptr;
            MPID_Request_get_ptr(win_ptr->fence_sync_req, req_ptr);
            MPID_Request_release(req_ptr);
            win_ptr->fence_sync_req = MPI_REQUEST_NULL;
            MPIDI_CH3I_num_active_issued_win--;
            MPIU_Assert(MPIDI_CH3I_num_active_issued_win >= 0);

            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        MPIU_CHKLMEM_MALLOC(rma_target_marks, int *, comm_size * sizeof(int),
                            mpi_errno, "rma_target_marks");
        for (i = 0; i < comm_size; i++)
            rma_target_marks[i] = 0;

        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
                rma_target_marks[curr_target->target_rank] = 1;
                curr_target = curr_target->next;
            }
        }

        win_ptr->at_completion_counter += comm_size;

        mpi_errno = MPIR_Reduce_scatter_block_impl(MPI_IN_PLACE, rma_target_marks, 1,
                                                   MPI_INT, MPI_SUM, win_ptr->comm_ptr, &errflag);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);

        MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
583

584 585 586 587 588 589 590 591 592 593 594
        win_ptr->at_completion_counter -= comm_size;
        win_ptr->at_completion_counter += rma_target_marks[0];
        MPIU_Assert(win_ptr->at_completion_counter >= 0);

        win_ptr->states.access_state = MPIDI_RMA_FENCE_GRANTED;
    }

    if (!scalable_fence_enabled) {
        for (i = 0; i < win_ptr->num_slots; i++) {
            curr_target = win_ptr->slots[i].target_list_head;
            while (curr_target != NULL) {
595 596 597
                /* flag is set in order to decrement complete counter on target */
                curr_target->win_complete_flag = 1;

598 599 600
                curr_target = curr_target->next;
            }
        }
601 602 603 604

        mpi_errno = flush_local_all(win_ptr);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
605 606
    }
    else {
607
        mpi_errno = flush_all(win_ptr);
608 609
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
610
    }
611

612 613
    /* Cleanup all targets on window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
614 615
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
James Dinan's avatar
James Dinan committed
616

617 618 619 620 621
    if (scalable_fence_enabled) {
        mpi_errno = MPIR_Barrier_impl(win_ptr->comm_ptr, &errflag);
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
        MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
622

623 624 625 626 627 628 629
        /* Set window access state properly. */
        if (assert & MPI_MODE_NOSUCCEED) {
            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        else {
            win_ptr->states.access_state = MPIDI_RMA_FENCE_GRANTED;
        }
630 631
    }
    else {
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        /* Waiting for all operations targeting at me to be finished. */
        while (win_ptr->at_completion_counter) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }

        if (assert & MPI_MODE_NOSUCCEED) {
            win_ptr->states.access_state = MPIDI_RMA_NONE;
        }
        else {
            /* Prepare for the next possible epoch */
            mpi_errno = MPIR_Ibarrier_impl(win_ptr->comm_ptr, &(win_ptr->fence_sync_req));
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
            MPIDI_CH3I_num_active_issued_win++;
            win_ptr->states.access_state = MPIDI_RMA_FENCE_ISSUED;

            if (win_ptr->shm_allocated == TRUE) {
                MPID_Comm *node_comm_ptr = win_ptr->comm_ptr->node_comm;
                mpi_errno = MPIR_Barrier_impl(node_comm_ptr, &errflag);
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
                MPIU_ERR_CHKANDJUMP(errflag, mpi_errno, MPI_ERR_OTHER, "**coll_fail");
            }
        }
658 659
    }

660
  finish_fence:
661 662 663
    /* Make sure that all targets are freed. */
    MPIU_Assert(win_ptr->non_empty_slots == 0);

664 665
    MPIU_Assert(win_ptr->active_req_cnt == 0);

666 667 668 669 670
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

671
  fn_exit:
672
    MPIU_CHKLMEM_FREEALL();
673 674 675
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_FENCE);
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
676
  fn_fail:
677 678 679 680 681 682
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}


#undef FUNCNAME
683
#define FUNCNAME MPIDI_Win_post
684 685
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
686
int MPIDI_Win_post(MPID_Group * post_grp_ptr, int assert, MPID_Win * win_ptr)
687
{
688
    int *post_ranks_in_win_grp;
689
    int mpi_errno = MPI_SUCCESS;
690
    MPIU_CHKLMEM_DECL(3);
691
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_POST);
692

693
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_POST);
694

695
    /* Note that here we cannot distinguish if this exposure epoch is overlapped
696 697 698
     * with an exposure epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * exposure epoch is overlapped with another exposure epoch of PSCW. */
699
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_NONE,
700
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
701

702 703 704
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
705 706
    }

707
    /* Set window exposure state properly. */
708 709 710 711
    win_ptr->states.exposure_state = MPIDI_RMA_PSCW_EXPO;

    win_ptr->at_completion_counter += post_grp_ptr->size;

712 713 714
    if ((assert & MPI_MODE_NOCHECK) == 0) {
        MPI_Request *req;
        MPI_Status *status;
715 716
        int i, post_grp_size, dst, rank;
        MPID_Comm *win_comm_ptr;
717

718 719
        /* NOCHECK not specified. We need to notify the source
         * processes that Post has been called. */
720

721
        post_grp_size = post_grp_ptr->size;
722 723
        win_comm_ptr = win_ptr->comm_ptr;
        rank = win_ptr->comm_ptr->rank;
724

725 726 727
        MPIU_CHKLMEM_MALLOC(post_ranks_in_win_grp, int *,
                            post_grp_size * sizeof(int), mpi_errno, "post_ranks_in_win_grp");
        mpi_errno = fill_ranks_in_win_grp(win_ptr, post_grp_ptr, post_ranks_in_win_grp);
728 729
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
730 731 732 733 734

        MPIU_CHKLMEM_MALLOC(req, MPI_Request *, post_grp_size * sizeof(MPI_Request),
                            mpi_errno, "req");
        MPIU_CHKLMEM_MALLOC(status, MPI_Status *, post_grp_size * sizeof(MPI_Status),
                            mpi_errno, "status");
735

736 737
        /* Send a 0-byte message to the source processes */
        for (i = 0; i < post_grp_size; i++) {
738
            dst = post_ranks_in_win_grp[i];
739

740 741 742 743
            if (dst != rank) {
                MPID_Request *req_ptr;
                mpi_errno = MPID_Isend(&i, 0, MPI_INT, dst, SYNC_POST_TAG, win_comm_ptr,
                                       MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
744 745
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
746 747 748 749 750
                req[i] = req_ptr->handle;
            }
            else {
                req[i] = MPI_REQUEST_NULL;
            }
751
        }
752

753 754 755 756 757 758 759 760 761 762 763 764
        mpi_errno = MPIR_Waitall_impl(post_grp_size, req, status);
        if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
            MPIU_ERR_POP(mpi_errno);

        /* --BEGIN ERROR HANDLING-- */
        if (mpi_errno == MPI_ERR_IN_STATUS) {
            for (i = 0; i < post_grp_size; i++) {
                if (status[i].MPI_ERROR != MPI_SUCCESS) {
                    mpi_errno = status[i].MPI_ERROR;
                    MPIU_ERR_POP(mpi_errno);
                }
            }
765
        }
766
        /* --END ERROR HANDLING-- */
767
    }
768

769
  fn_exit:
770 771
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_POST);
772 773
    return mpi_errno;
    /* --BEGIN ERROR HANDLING-- */
774
  fn_fail:
775 776 777 778
    goto fn_exit;
    /* --END ERROR HANDLING-- */
}

779

780 781 782 783 784
#undef FUNCNAME
#define FUNCNAME MPIDI_Win_start
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
int MPIDI_Win_start(MPID_Group * group_ptr, int assert, MPID_Win * win_ptr)
785
{
786
    int mpi_errno = MPI_SUCCESS;
787
    MPIU_CHKLMEM_DECL(2);
788 789
    MPIU_CHKPMEM_DECL(2);
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_START);
790

791
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_START);
792

793
    /* Note that here we cannot distinguish if this access epoch is overlapped
794 795 796 797
     * with an access epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * access epoch is overlapped with another access epoch of PSCW or Passive
     * Target. */
798 799 800 801
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
802

803
    win_ptr->start_grp_size = group_ptr->size;
804

805 806 807 808 809
    MPIU_CHKPMEM_MALLOC(win_ptr->start_ranks_in_win_grp, int *,
                        win_ptr->start_grp_size * sizeof(int),
                        mpi_errno, "win_ptr->start_ranks_in_win_grp");

    mpi_errno = fill_ranks_in_win_grp(win_ptr, group_ptr, win_ptr->start_ranks_in_win_grp);
810 811
    if (mpi_errno)
        MPIU_ERR_POP(mpi_errno);
812

813
    if ((assert & MPI_MODE_NOCHECK) == 0) {
Xin Zhao's avatar
Xin Zhao committed
814
        int i, intra_cnt;
815 816 817 818 819 820
        MPI_Request *intra_start_req = NULL;
        MPI_Status *intra_start_status = NULL;
        MPID_Comm *comm_ptr = win_ptr->comm_ptr;
        int rank = comm_ptr->rank;

        /* wait for messages from local processes */
821

822 823 824 825
        /* post IRECVs */
        MPIU_CHKPMEM_MALLOC(win_ptr->start_req, MPI_Request *,
                            win_ptr->start_grp_size * sizeof(MPI_Request),
                            mpi_errno, "win_ptr->start_req");
826

827 828 829
        if (win_ptr->shm_allocated == TRUE) {
            int node_comm_size = comm_ptr->node_comm->local_size;
            MPIU_CHKLMEM_MALLOC(intra_start_req, MPI_Request *,
830
                                node_comm_size * sizeof(MPI_Request), mpi_errno, "intra_start_req");
831 832 833 834
            MPIU_CHKLMEM_MALLOC(intra_start_status, MPI_Status *,
                                node_comm_size * sizeof(MPI_Status),
                                mpi_errno, "intra_start_status");
        }
835

836 837
        intra_cnt = 0;
        for (i = 0; i < win_ptr->start_grp_size; i++) {
838
            MPID_Request *req_ptr;
839 840
            MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
            int src = win_ptr->start_ranks_in_win_grp[i];
841

842 843 844
            if (src != rank) {
                MPIDI_Comm_get_vc(comm_ptr, rank, &orig_vc);
                MPIDI_Comm_get_vc(comm_ptr, src, &target_vc);
845

846 847
                mpi_errno = MPID_Irecv(NULL, 0, MPI_INT, src, SYNC_POST_TAG,
                                       comm_ptr, MPID_CONTEXT_INTRA_PT2PT, &req_ptr);
848 849
                if (mpi_errno != MPI_SUCCESS)
                    MPIU_ERR_POP(mpi_errno);
850

851
                if (win_ptr->shm_allocated == TRUE && orig_vc->node_id == target_vc->node_id) {
852 853 854 855 856 857 858 859 860
                    intra_start_req[intra_cnt++] = req_ptr->handle;
                    win_ptr->start_req[i] = MPI_REQUEST_NULL;
                }
                else {
                    win_ptr->start_req[i] = req_ptr->handle;
                }
            }
            else {
                win_ptr->start_req[i] = MPI_REQUEST_NULL;
861
            }
862
        }
863

864 865 866 867 868 869 870 871 872 873 874 875
        /* for targets on SHM, waiting until their IRECVs to be finished */
        if (intra_cnt) {
            mpi_errno = MPIR_Waitall_impl(intra_cnt, intra_start_req, intra_start_status);
            if (mpi_errno && mpi_errno != MPI_ERR_IN_STATUS)
                MPIU_ERR_POP(mpi_errno);
            /* --BEGIN ERROR HANDLING-- */
            if (mpi_errno == MPI_ERR_IN_STATUS) {
                for (i = 0; i < intra_cnt; i++) {
                    if (intra_start_status[i].MPI_ERROR != MPI_SUCCESS) {
                        mpi_errno = intra_start_status[i].MPI_ERROR;
                        MPIU_ERR_POP(mpi_errno);
                    }
876
                }
877
            }
878
            /* --END ERROR HANDLING-- */
879
        }
880 881
    }

882
  finish_start:
883
    /* Set window access state properly. */
884
    win_ptr->states.access_state = MPIDI_RMA_PSCW_ISSUED;
885
    MPIDI_CH3I_num_active_issued_win++;
886

887
    MPIU_Assert(win_ptr->active_req_cnt == 0);
888

889 890 891 892 893
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

894
  fn_exit:
895 896 897
    MPIU_CHKLMEM_FREEALL();
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_START);
    return mpi_errno;
898
  fn_fail:
899 900
    MPIU_CHKPMEM_REAP();
    goto fn_exit;
901 902 903
}


904

905
#undef FUNCNAME
906
#define FUNCNAME MPIDI_Win_complete
907 908
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
909
int MPIDI_Win_complete(MPID_Win * win_ptr)
910
{
911
    int mpi_errno = MPI_SUCCESS;
912 913 914
    int i, dst, rank = win_ptr->comm_ptr->rank;
    MPID_Comm *win_comm_ptr = win_ptr->comm_ptr;
    MPIDI_RMA_Target_t *curr_target;
915
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_COMPLETE);
916

917
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_COMPLETE);
918

919 920 921
    /* Access epochs on the same window must be disjoint. */
    MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PSCW_ISSUED &&
                        win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED,
James Dinan's avatar
James Dinan committed
922 923
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");

924 925 926 927 928
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

929 930 931 932 933 934
    if (win_ptr->states.access_state == MPIDI_RMA_PSCW_ISSUED) {
        while (win_ptr->states.access_state != MPIDI_RMA_PSCW_GRANTED) {
            mpi_errno = wait_progress_engine();
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
        }
935 936
    }

937 938 939 940 941 942
    for (i = 0; i < win_ptr->start_grp_size; i++) {
        dst = win_ptr->start_ranks_in_win_grp[i];
        if (dst == rank) {
            win_ptr->at_completion_counter--;
            MPIU_Assert(win_ptr->at_completion_counter >= 0);
            continue;
943
        }
944

945
        if (win_comm_ptr->local_size <= win_ptr->num_slots)
946
            curr_target = win_ptr->slots[dst].target_list_head;
947
        else {
948
            curr_target = win_ptr->slots[dst % win_ptr->num_slots].target_list_head;
949 950 951
            while (curr_target != NULL && curr_target->target_rank != dst)
                curr_target = curr_target->next;
        }
952

953 954
        if (curr_target != NULL) {
            curr_target->win_complete_flag = 1;
955 956
        }
        else {
957
            /* FIXME: do we need to wait for remote completion? */
958
            mpi_errno = send_decr_at_cnt_msg(dst, win_ptr, MPIDI_CH3_PKT_FLAG_NONE);
959 960
            if (mpi_errno != MPI_SUCCESS)
                MPIU_ERR_POP(mpi_errno);
961
        }
962 963
    }

964
    mpi_errno = flush_local_all(win_ptr);
965 966
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
967 968 969

    /* Cleanup all targets on this window. */
    mpi_errno = MPIDI_CH3I_RMA_Cleanup_targets_win(win_ptr);
970 971
    if (mpi_errno != MPI_SUCCESS)
        MPIU_ERR_POP(mpi_errno);
972

973
  finish_complete:
974
    /* Set window access state properly. */
975
    win_ptr->states.access_state = MPIDI_RMA_NONE;
976

977 978 979 980
    /* free start group stored in window */
    MPIU_Free(win_ptr->start_ranks_in_win_grp);
    win_ptr->start_ranks_in_win_grp = NULL;
    MPIU_Assert(win_ptr->start_req == NULL);
981

982 983 984
    /* Make sure that all targets are freed. */
    MPIU_Assert(win_ptr->non_empty_slots == 0);

985
    MPIU_Assert(win_ptr->active_req_cnt == 0);
986

987 988
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_COMPLETE);
989
    return mpi_errno;
990 991 992 993
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
994
}
995

996 997


998
#undef FUNCNAME
999
#define FUNCNAME MPIDI_Win_wait
1000 1001
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
1002
int MPIDI_Win_wait(MPID_Win * win_ptr)
1003
{
1004 1005 1006 1007
    int mpi_errno = MPI_SUCCESS;
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_WAIT);

    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_WAIT);
1008

1009
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
1010
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
1011

1012
    /* wait for all operations from other processes to finish */
1013 1014 1015 1016
    while (win_ptr->at_completion_counter) {
        mpi_errno = wait_progress_engine();
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
1017 1018
    }

1019
  finish_wait:
1020
    /* Set window exposure state properly. */
1021 1022
    win_ptr->states.exposure_state = MPIDI_RMA_NONE;

1023 1024 1025 1026 1027
    /* Ensure ordering of load/store operations. */
    if (win_ptr->shm_allocated == TRUE) {
        OPA_read_write_barrier();
    }

1028 1029
  fn_exit:
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_WAIT);
1030
    return mpi_errno;
1031 1032 1033 1034
    /* --BEGIN ERROR HANDLING-- */
  fn_fail:
    goto fn_exit;
    /* --END ERROR HANDLING-- */
1035 1036
}

1037

1038
#undef FUNCNAME
1039
#define FUNCNAME MPIDI_Win_test
1040 1041
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
1042
int MPIDI_Win_test(MPID_Win * win_ptr, int *flag)
1043 1044
{
    int mpi_errno = MPI_SUCCESS;
1045
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_TEST);
1046

1047
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_TEST);
1048

1049
    MPIU_ERR_CHKANDJUMP(win_ptr->states.exposure_state != MPIDI_RMA_PSCW_EXPO,
1050
                        mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
1051

1052 1053
    mpi_errno = MPID_Progress_test();
    if (mpi_errno != MPI_SUCCESS) {
1054
        MPIU_ERR_POP(mpi_errno);
1055 1056
    }

1057 1058
    *flag = (win_ptr->at_completion_counter) ? 0 : 1;
    if (*flag) {
1059
        /* Set window exposure state properly. */
1060 1061
        win_ptr->states.exposure_state = MPIDI_RMA_NONE;

1062 1063 1064
        /* Ensure ordering of load/store operations. */
        if (win_ptr->shm_allocated == TRUE) {
            OPA_read_write_barrier();
1065 1066 1067
        }
    }

1068
  fn_exit:
1069
    MPIDI_RMA_FUNC_EXIT(MPID_STATE_MPIDI_WIN_TEST);
1070
    return mpi_errno;
1071
    /* --BEGIN ERROR HANDLING-- */
1072
  fn_fail:
1073
    goto fn_exit;
1074
    /* --END ERROR HANDLING-- */
1075 1076
}

1077

1078 1079 1080 1081 1082 1083
/********************************************************************************/
/* Passive Target synchronization (including WIN_LOCK, WIN_UNLOCK, WIN_FLUSH,   */
/* WIN_FLUSH_LOCAL, WIN_LOCK_ALL, WIN_UNLOCK_ALL, WIN_FLUSH_ALL,                */
/* WIN_FLUSH_LOCAL_ALL, WIN_SYNC)                                               */
/********************************************************************************/

1084
#undef FUNCNAME
1085
#define FUNCNAME MPIDI_Win_lock
1086 1087
#undef FCNAME
#define FCNAME MPIDI_QUOTE(FUNCNAME)
1088
int MPIDI_Win_lock(int lock_type, int dest, int assert, MPID_Win * win_ptr)
1089
{
1090 1091 1092 1093 1094
    int made_progress = 0;
    int shm_target = FALSE;
    int rank = win_ptr->comm_ptr->rank;
    MPIDI_RMA_Target_t *target = NULL;
    MPIDI_VC_t *orig_vc = NULL, *target_vc = NULL;
1095
    int mpi_errno = MPI_SUCCESS;
1096
    MPIDI_STATE_DECL(MPID_STATE_MPIDI_WIN_LOCK);
1097

1098
    MPIDI_RMA_FUNC_ENTER(MPID_STATE_MPIDI_WIN_LOCK);
1099

1100
    /* Note that here we cannot distinguish if this access epoch is overlapped
1101 1102 1103 1104
     * with an access epoch of FENCE (which is not allowed), since FENCE may be
     * ended up with not unsetting the window state. We can only detect if this
     * access epoch is overlapped with another access epoch of PSCW or Passive
     * Target. */
1105 1106 1107 1108 1109 1110 1111
    if (win_ptr->lock_epoch_count == 0) {
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_NONE &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_ISSUED &&
                            win_ptr->states.access_state != MPIDI_RMA_FENCE_GRANTED,
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
    else {
Xin Zhao's avatar
Xin Zhao committed
1112
        MPIU_ERR_CHKANDJUMP(win_ptr->states.access_state != MPIDI_RMA_PER_TARGET,
1113 1114
                            mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
1115

1116 1117 1118
    if (dest != MPI_PROC_NULL) {
        /* check if we lock the same target window more than once. */
        mpi_errno = MPIDI_CH3I_Win_find_target(win_ptr, dest, &target);
1119 1120
        if (mpi_errno != MPI_SUCCESS)
            MPIU_ERR_POP(mpi_errno);
1121 1122
        MPIU_ERR_CHKANDJUMP(target != NULL, mpi_errno, MPI_ERR_RMA_SYNC, "**rmasync");
    }
1123

1124
    /* Error handling is finished. */
1125

1126
    if (win_ptr->lock_epoch_count == 0) {