Commit 6bec3789 authored by Cody Permann's avatar Cody Permann
Browse files

Minor fixups

parent 38531956
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 80
ymax = 80
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatSource]
type = HeatSource
function = '100*sin(3.14159*x/80)*sin(3.14159*y/80)'
variable = T
[../]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = right
value = 0
[../]
[./top]
type = DirichletBC
variable = T
boundary = top
value = 0
[../]
[./bottom]
type = DirichletBC
variable = T
boundary = bottom
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
block = 0
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
block = 0
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
block = 0
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(3.14159*x/80)*exp(-0.95/(0.092*8.92)*3.14159^2/80^2*t)' #T(x,t) = 100sin(pix/L)exp(-rho/(cp k) pi^2/L^2 t)
variable = T
[../]
[]
[Executioner]
type = Transient
scheme = bdf2
nl_rel_tol = 1e-12
l_tol = 1e-6
dt = 2
end_time = 100
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[]
[Outputs]
exodus = true
print_perf_log = true
[]
# This test solves a 1D transient heat equation
# The error is caclulated by comparing to the analytical solution
# The problem setup and analytical solution are taken from "Advanced Engineering
# Mathematics, 10th edition" by Erwin Kreyszig.
# http://www.amazon.com/Advanced-Engineering-Mathematics-Erwin-Kreyszig/dp/0470458364
# It is Example 1 in section 12.6 on page 561
[Mesh]
type = GeneratedMesh
dim = 2
nx = 40
ny = 40
xmax = 80
ymax = 80
[]
[Variables]
[./T]
[../]
[]
[Kernels]
[./HeatSource]
type = HeatSource
function = '100*sin(3.14159*x/80)*sin(3.14159*y/80)'
variable = T
[../]
[./HeatDiff]
type = HeatConduction
variable = T
[../]
[./HeatTdot]
type = HeatConductionTimeDerivative
variable = T
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = T
boundary = left
value = 0
[../]
[./right]
type = DirichletBC
variable = T
boundary = right
value = 0
[../]
[./top]
type = DirichletBC
variable = T
boundary = top
value = 0
[../]
[./bottom]
type = DirichletBC
variable = T
boundary = bottom
value = 0
[../]
[]
[Materials]
[./k]
type = GenericConstantMaterial
prop_names = 'thermal_conductivity'
prop_values = '0.95' #copper in cal/(cm sec C)
block = 0
[../]
[./cp]
type = GenericConstantMaterial
prop_names = 'specific_heat'
prop_values = '0.092' #copper in cal/(g C)
block = 0
[../]
[./rho]
type = GenericConstantMaterial
prop_names = 'density'
prop_values = '8.92' #copper in g/(cm^3)
block = 0
[../]
[]
[Postprocessors]
[./error]
type = NodalL2Error
function = '100*sin(3.14159*x/80)*exp(-0.95/(0.092*8.92)*3.14159^2/80^2*t)' #T(x,t) = 100sin(pix/L)exp(-rho/(cp k) pi^2/L^2 t)
variable = T
[../]
[]
[Executioner]
type = NekExecutioner
scheme = bdf2
nl_rel_tol = 1e-12
l_tol = 1e-6
dt = 2
end_time = 100
petsc_options_iname = '-pc_type -pc_hypre_type'
petsc_options_value = 'hypre boomeramg'
[./TimeStepper]
type = NekTimestepper
[../]
[]
[Outputs]
exodus = true
print_perf_log = true
[]
......@@ -22,8 +22,6 @@ public:
*/
NekExecutioner(const InputParameters & parameters);
virtual ~NekExecutioner();
/**
* Initialize the executioner
*/
......@@ -34,13 +32,13 @@ public:
*/
virtual void preStep();
virtual void takeStep(Real input_dt = -1.0);
// virtual void takeStep(Real input_dt = -1.0);
virtual void postStep();
/**
* Whether or not the last solve converged.
*/
virtual bool lastSolveConverged();
// virtual bool lastSolveConverged();
};
#endif //MOON_NEKEXECUTIONER_H
......@@ -12,6 +12,10 @@ InputParameters validParams<NekExecutioner>()
return params;
}
NekExecutioner::NekExecutioner(const InputParameters & parameters) :
Transient(parameters)
{
}
void NekExecutioner::init() {
Transient::init();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment