Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
nek5000
giraffe
Commits
3a848402
Commit
3a848402
authored
Apr 24, 2018
by
Kevin Dugan
Browse files
Adding coupled heat conduction w/o MOOSE source
parent
e1bb303b
Changes
15
Expand all
Hide whitespace changes
Inline
Sidebyside
examples/coupled_heat_conduction/1D_transient.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
type
=
GeneratedMesh
dim
=
1
nx
=
160
xmax
=
80
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
ICs
]
[
.
/
T_IC
]
type
=
FunctionIC
variable
=
T
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
'
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T
[
..
/
]
[]
[
BCs
]
[
.
/
left
]
type
=
DirichletBC
variable
=
T
boundary
=
left
value
=
0
[
..
/
]
[
.
/
right
]
type
=
DirichletBC
variable
=
T
boundary
=
right
value
=
0
[
..
/
]
[]
[
Materials
]
[
.
/
k
]
type
=
GenericConstantMaterial
prop_names
=
'
thermal_conductivity
'
prop_values
=
'
0.95
'
#
copper
in
cal
/
(
cm
sec
C
)
block
=
0
[
..
/
]
[
.
/
cp
]
type
=
GenericConstantMaterial
prop_names
=
'
specific_heat
'
prop_values
=
'
0.092
'
#
copper
in
cal
/
(
g
C
)
block
=
0
[
..
/
]
[
.
/
rho
]
type
=
GenericConstantMaterial
prop_names
=
'
density
'
prop_values
=
'
8.92
'
#
copper
in
g
/
(
cm
^
3
)
block
=
0
[
..
/
]
[]
[
Postprocessors
]
[
.
/
error
]
type
=
NodalL2Error
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
exp
(

0.95
/
(
0.092
*
8.92
)
*
3.14159
^
2
/
80
^
2
*
t
)
'
#
T
(
x
,
t
)
=
100
sin
(
pix
/
L
)
exp
(

rho
/
(
cp
k
)
pi
^
2
/
L
^
2
t
)
variable
=
T
[
..
/
]
[]
[
Executioner
]
type
=
Transient
scheme
=
bdf2
nl_rel_tol
=
1e12
l_tol
=
1e6
dt
=
2
end_time
=
100
petsc_options_iname
=
'

pc_type

pc_hypre_type
'
petsc_options_value
=
'
hypre
boomeramg
'
[]
[
Outputs
]
exodus
=
true
print_perf_log
=
true
[]
examples/coupled_heat_conduction/2D_circle_sideset.exo
0 → 100644
View file @
3a848402
File added
examples/coupled_heat_conduction/2D_transient_circle.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
#
This
is
a
circle
from
x
=
(

0.5
,
0.5
)
and
y
=
(

0.5
,
0.5
)
file
=
2
D_circle_sideset
.
exo
block_id
=
'1'
block_name
=
'
interior
'
boundary_id
=
'
100
'
boundary_name
=
'
wall
'
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
ICs
]
[
.
/
T_IC
]
type
=
FunctionIC
variable
=
T
#
function
=
'
exp
(

3.14159
*
(
x
*
x
+
y
*
y
))
'
function
=
'
0.0
'
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatSource
]
type
=
HeatSource
function
=
'
1.0
'
variable
=
T
[
..
/
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T
[
..
/
]
[]
[
Functions
]
#
BCFunction
just
returns
0.0
right
now
[
.
/
bc_func
]
type
=
BCFunction
[
..
/
]
[]
[
BCs
]
[
.
/
wall
]
type
=
FunctionDirichletBC
variable
=
T
boundary
=
'
wall
'
function
=
bc_func
[
..
/
]
[]
[
Materials
]
[
.
/
k
]
type
=
GenericConstantMaterial
prop_names
=
'
thermal_conductivity
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[
.
/
cp
]
type
=
GenericConstantMaterial
prop_names
=
'
specific_heat
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[
.
/
rho
]
type
=
GenericConstantMaterial
prop_names
=
'
density
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[]
#
[
Postprocessors
]
#
[
.
/
error
]
#
type
=
NodalL2Error
#
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
exp
(

0.95
/
(
0.092
*
8.92
)
*
3.14159
^
2
/
80
^
2
*
t
)
'
#
T
(
x
,
t
)
=
100
sin
(
pix
/
L
)
exp
(

rho
/
(
cp
k
)
pi
^
2
/
L
^
2
t
)
#
variable
=
T
#
[
..
/
]
#
[]
[
Executioner
]
type
=
Transient
scheme
=
bdf2
#
Others
available
:
backward
Euler
,
CrankNicholson
,
etc
.
#
scheme
=
'
ExplicitEuler
'
dt
=
0.001
#
Initial
timestep
size
start_time
=
0
#
Starting
time
#
num_steps
=
200
#
DIVERGES
AFTER
6
TIMESTEPS
..
.
num_steps
=
1
#
DIVERGES
AFTER
6
TIMESTEPS
..
.
nl_rel_tol
=
1e8
#
Nonlinear
relative
tolerance
l_tol
=
1e6
#
Linear
tolerance
petsc_options_iname
=
'

pc_type

pc_hypre_type
'
petsc_options_value
=
'
hypre
boomeramg
'
[]
[
Outputs
]
exodus
=
true
print_perf_log
=
true
[]
examples/coupled_heat_conduction/2D_transient_square.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
type
=
GeneratedMesh
dim
=
2
nx
=
40
ny
=
40
xmax
=
80
ymax
=
80
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatSource
]
type
=
HeatSource
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
sin
(
3.14159
*
y
/
80
)
'
variable
=
T
[
..
/
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T
[
..
/
]
[]
[
BCs
]
[
.
/
left
]
type
=
DirichletBC
variable
=
T
boundary
=
left
value
=
0
[
..
/
]
[
.
/
right
]
type
=
DirichletBC
variable
=
T
boundary
=
right
value
=
0
[
..
/
]
[
.
/
top
]
type
=
DirichletBC
variable
=
T
boundary
=
top
value
=
0
[
..
/
]
[
.
/
bottom
]
type
=
DirichletBC
variable
=
T
boundary
=
bottom
value
=
0
[
..
/
]
[]
[
Materials
]
[
.
/
k
]
type
=
GenericConstantMaterial
prop_names
=
'
thermal_conductivity
'
prop_values
=
'
0.95
'
#
copper
in
cal
/
(
cm
sec
C
)
block
=
0
[
..
/
]
[
.
/
cp
]
type
=
GenericConstantMaterial
prop_names
=
'
specific_heat
'
prop_values
=
'
0.092
'
#
copper
in
cal
/
(
g
C
)
block
=
0
[
..
/
]
[
.
/
rho
]
type
=
GenericConstantMaterial
prop_names
=
'
density
'
prop_values
=
'
8.92
'
#
copper
in
g
/
(
cm
^
3
)
block
=
0
[
..
/
]
[]
[
Postprocessors
]
[
.
/
error
]
type
=
NodalL2Error
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
exp
(

0.95
/
(
0.092
*
8.92
)
*
3.14159
^
2
/
80
^
2
*
t
)
'
#
T
(
x
,
t
)
=
100
sin
(
pix
/
L
)
exp
(

rho
/
(
cp
k
)
pi
^
2
/
L
^
2
t
)
variable
=
T
[
..
/
]
[]
[
Executioner
]
type
=
Transient
scheme
=
bdf2
nl_rel_tol
=
1e12
l_tol
=
1e6
dt
=
2
end_time
=
100
petsc_options_iname
=
'

pc_type

pc_hypre_type
'
petsc_options_value
=
'
hypre
boomeramg
'
[]
[
Outputs
]
exodus
=
true
print_perf_log
=
true
[]
examples/coupled_heat_conduction/3D_sideset.exo
0 → 100644
View file @
3a848402
File added
examples/coupled_heat_conduction/3D_transient_cube.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
type
=
GeneratedMesh
dim
=
3
nx
=
20
ny
=
20
nz
=
20
xmax
=
80
ymax
=
80
zmax
=
80
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatSource
]
type
=
HeatSource
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
sin
(
3.14159
*
y
/
80
)
*
sin
(
3.14159
*
z
/
80
)
'
variable
=
T
[
..
/
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T
[
..
/
]
[]
[
BCs
]
[
.
/
left
]
type
=
DirichletBC
variable
=
T
boundary
=
left
value
=
0
[
..
/
]
[
.
/
right
]
type
=
DirichletBC
variable
=
T
boundary
=
right
value
=
0
[
..
/
]
[
.
/
top
]
type
=
DirichletBC
variable
=
T
boundary
=
top
value
=
0
[
..
/
]
[
.
/
bottom
]
type
=
DirichletBC
variable
=
T
boundary
=
bottom
value
=
0
[
..
/
]
[]
[
Materials
]
[
.
/
k
]
type
=
GenericConstantMaterial
prop_names
=
'
thermal_conductivity
'
prop_values
=
'
0.95
'
#
copper
in
cal
/
(
cm
sec
C
)
block
=
0
[
..
/
]
[
.
/
cp
]
type
=
GenericConstantMaterial
prop_names
=
'
specific_heat
'
prop_values
=
'
0.092
'
#
copper
in
cal
/
(
g
C
)
block
=
0
[
..
/
]
[
.
/
rho
]
type
=
GenericConstantMaterial
prop_names
=
'
density
'
prop_values
=
'
8.92
'
#
copper
in
g
/
(
cm
^
3
)
block
=
0
[
..
/
]
[]
[
Postprocessors
]
[
.
/
error
]
type
=
NodalL2Error
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
exp
(

0.95
/
(
0.092
*
8.92
)
*
3.14159
^
2
/
80
^
2
*
t
)
'
#
T
(
x
,
t
)
=
100
sin
(
pix
/
L
)
exp
(

rho
/
(
cp
k
)
pi
^
2
/
L
^
2
t
)
variable
=
T
[
..
/
]
[]
[
Executioner
]
type
=
Transient
scheme
=
bdf2
nl_rel_tol
=
1e12
l_tol
=
1e6
dt
=
2
#
end_time
=
100
end_time
=
10
petsc_options_iname
=
'

pc_type

pc_hypre_type
'
petsc_options_value
=
'
hypre
boomeramg
'
[]
[
Outputs
]
exodus
=
true
print_perf_log
=
true
[]
examples/coupled_heat_conduction/3D_transient_cylinder.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
#
This
is
a
cylinder
with
r
=
0.5
,
z
=
(
0
,
1
)
file
=
3
D_sideset
.
exo
block_id
=
'1'
block_name
=
'
interior
'
boundary_id
=
'
100
200
300
'
boundary_name
=
'
top
bottom
wall
'
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
ICs
]
[
.
/
T_IC
]
type
=
FunctionIC
variable
=
T
#
function
=
'
exp
(

3.14159
*
(
x
*
x
+
y
*
y
))
'
function
=
'
0.0
'
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatSource
]
type
=
HeatSource
#
function
=
'
100
*
cos
(
3.14159
*
x
)
*
cos
(
3.14159
*
y
)
'
function
=
'
1.0
'
variable
=
T
[
..
/
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T
[
..
/
]
[]
[
Functions
]
#
BCFunction
just
returns
0.0
right
now
[
.
/
bc_func
]
type
=
BCFunction
[
..
/
]
[]
[
BCs
]
[
.
/
top
]
type
=
FunctionDirichletBC
variable
=
T
boundary
=
'
top
'
function
=
bc_func
[
..
/
]
[
.
/
bottom
]
type
=
FunctionDirichletBC
variable
=
T
boundary
=
'
bottom
'
function
=
bc_func
[
..
/
]
[
.
/
wall
]
type
=
FunctionDirichletBC
variable
=
T
boundary
=
'
wall
'
function
=
bc_func
[
..
/
]
[]
[
Materials
]
[
.
/
k
]
type
=
GenericConstantMaterial
prop_names
=
'
thermal_conductivity
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[
.
/
cp
]
type
=
GenericConstantMaterial
prop_names
=
'
specific_heat
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[
.
/
rho
]
type
=
GenericConstantMaterial
prop_names
=
'
density
'
prop_values
=
'1'
block
=
'
interior
'
[
..
/
]
[]
[
Postprocessors
]
[
.
/
error
]
type
=
NodalL2Error
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
exp
(

0.95
/
(
0.092
*
8.92
)
*
3.14159
^
2
/
80
^
2
*
t
)
'
#
T
(
x
,
t
)
=
100
sin
(
pix
/
L
)
exp
(

rho
/
(
cp
k
)
pi
^
2
/
L
^
2
t
)
variable
=
T
[
..
/
]
[]
[
Executioner
]
type
=
Transient
scheme
=
'
ExplicitEuler
'
#
Others
available
:
backward
Euler
,
CrankNicholson
,
etc
.
dt
=
0.001
#
Initial
timestep
size
start_time
=
0
#
Starting
time
num_steps
=
20
#
DIVERGES
AFTER
4
TIMESTEPS
nl_rel_tol
=
1e8
#
Nonlinear
relative
tolerance
l_tol
=
1e6
#
Linear
tolerance
petsc_options_iname
=
'

pc_type

pc_hypre_type
'
petsc_options_value
=
'
hypre
boomeramg
'
[]
[
Outputs
]
exodus
=
true
print_perf_log
=
true
[]
examples/coupled_heat_conduction/3d_transient.i
0 → 100644
View file @
3a848402
#
This
test
solves
a
1
D
transient
heat
equation
#
The
error
is
caclulated
by
comparing
to
the
analytical
solution
#
The
problem
setup
and
analytical
solution
are
taken
from
"Advanced Engineering
# Mathematics, 10th edition"
by
Erwin
Kreyszig
.
#
http
:
//www.amazon.com/AdvancedEngineeringMathematicsErwinKreyszig/dp/0470458364
#
It
is
Example
1
in
section
12.6
on
page
561
[
Mesh
]
file
=
3
D
.
exo
[]
[
Variables
]
[
.
/
T
]
[
..
/
]
[]
[
ICs
]
[
.
/
T_IC
]
type
=
FunctionIC
variable
=
T
function
=
'
100
*
sin
(
3.14159
*
x
/
80
)
*
sin
(
3.14159
*
y
/
80
)
'
[
..
/
]
[]
[
Kernels
]
[
.
/
HeatDiff
]
type
=
HeatConduction
variable
=
T
[
..
/
]
[
.
/
HeatTdot
]
type
=
HeatConductionTimeDerivative
variable
=
T