codes-darshan-io-wrkld.c 57.4 KB
Newer Older
1
2
3
4
5
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */
6
#include <assert.h>
7
#include <math.h>
8
9

#include "codes/codes-workload.h"
10
#include "codes/quickhash.h"
11
#include "codes-workload-method.h"
12

13
#include "darshan-logutils.h"
14

15
16
17
#define DEF_INTER_IO_DELAY_PCT 0.2
#define DEF_INTER_CYC_DELAY_PCT 0.4

18
19
20
21
#define DARSHAN_NEGLIGIBLE_DELAY .001

#define RANK_HASH_TABLE_SIZE 397

22
23
24
25
26
#define IO_IS_IN_SIZE_BIN_RANGE(size, bin_ndx, bin_min_sizes)                       \
        ((bin_ndx == 9) ?                                                           \
        (size >= bin_min_sizes[bin_ndx]) :                                          \
        ((size >= bin_min_sizes[bin_ndx]) && (size < bin_min_sizes[bin_ndx + 1])))

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/* structure for storing a darshan workload operation (a codes op with 2 timestamps) */
struct darshan_io_op
{
    struct codes_workload_op codes_op;
    double start_time;
    double end_time;
};

/* I/O context structure managed by each rank in the darshan workload */
struct rank_io_context
{
    int64_t my_rank;
    double last_op_time;
    void *io_op_dat;
    struct qhash_head hash_link;
};

/* Darshan workload generator's implementation of the CODES workload API */
45
46
static int darshan_io_workload_load(const char *params, int rank);
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op);
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
static int darshan_rank_hash_compare(void *key, struct qhash_head *link);

/* Darshan I/O op data structure access (insert, remove) abstraction */
static void *darshan_init_io_op_dat(void);
static void darshan_insert_next_io_op(void *io_op_dat, struct darshan_io_op *io_op);
static void darshan_remove_next_io_op(void *io_op_dat, struct darshan_io_op *io_op,
                                      double last_op_time);
static void darshan_finalize_io_op_dat(void *io_op_dat);
static int darshan_io_op_compare(const void *p1, const void *p2);

/* Helper functions for implementing the (complex, nonfactored) Darshan workload generator */
static void generate_psx_ind_file_events(struct darshan_file *file,
                                         struct rank_io_context *io_context);
static void generate_psx_coll_file_events(struct darshan_file *file,
                                          struct rank_io_context *io_context,
                                          int64_t nprocs, int64_t aggregator_cnt);
63
static double generate_psx_open_event(struct darshan_file *file, int create_flag,
64
65
                                      double meta_op_time, double cur_time,
                                      struct rank_io_context *io_context);
66
static double generate_psx_close_event(struct darshan_file *file, double meta_op_time,
67
68
69
                                       double cur_time, struct rank_io_context *io_context);
static double generate_barrier_event(struct darshan_file *file, int64_t root, double cur_time,
                                     struct rank_io_context *io_context);
70
71
static double generate_psx_ind_io_events(struct darshan_file *file, int64_t io_ops_this_cycle,
                                         int64_t open_ndx, double inter_io_delay, 
72
73
74
75
76
77
78
                                         double meta_op_time, double cur_time,
                                         struct rank_io_context *io_context);
static double generate_psx_coll_io_events(struct darshan_file *file, int64_t ind_io_ops_this_cycle,
                                          int64_t coll_io_ops_this_cycle, int64_t nprocs,
                                          int64_t aggregator_cnt, int64_t open_ndx,
                                          double inter_io_delay, double meta_op_time, double cur_time,
                                          struct rank_io_context *io_context);
79
80
81
82
83
84
85
static void determine_io_params(struct darshan_file *file, int write_flag, int coll_flag,
                                int64_t io_cycles, size_t *io_sz, off_t *io_off);
static void calc_io_delays(struct darshan_file *file, int64_t num_opens, int64_t num_io_ops,
                           double delay_per_cycle, double *first_io_delay, double *close_delay,
                           double *inter_open_delay, double *inter_io_delay);
static void file_sanity_check(struct darshan_file *file, struct darshan_job *job);

86
87
88
89
90
91
92
93
/* workload method name and function pointers for the CODES workload API */
struct codes_workload_method darshan_io_workload_method =
{
    .method_name = "darshan_io_workload",
    .codes_workload_load = darshan_io_workload_load,
    .codes_workload_get_next = darshan_io_workload_get_next,
};

94
/* hash table to store per-rank workload contexts */
95
static struct qhash_table *rank_tbl = NULL;
96
static int rank_tbl_pop = 0;
97

98
99
100
/* load the workload generator for this rank, given input params */
static int darshan_io_workload_load(const char *params, int rank)
{
101
102
    darshan_params *d_params = (darshan_params *)params;
    darshan_fd logfile_fd;
103
104
    struct darshan_job job;
    struct darshan_file next_file;
105
    struct rank_io_context *my_ctx;
106
    int ret;
107

108
    if (!d_params)
109
110
        return -1;

111
    /* open the darshan log to begin reading in file i/o info */
112
113
    logfile_fd = darshan_log_open(d_params->log_file_path, "r");
    if (logfile_fd < 0)
114
        return -1;
115

116
117
118
119
120
121
122
123
    /* get the per-job stats from the log */
    ret = darshan_log_getjob(logfile_fd, &job);
    if (ret < 0)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }

124
125
126
127
128
129
130
131
132
133
134
    /* allocate the i/o context needed by this rank */
    my_ctx = malloc(sizeof(struct rank_io_context));
    if (!my_ctx)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }
    my_ctx->my_rank = (int64_t)rank;
    my_ctx->last_op_time = 0.0;
    my_ctx->io_op_dat = darshan_init_io_op_dat();

135
136
137
138
139
140
141
142
143
144
    /* loop over all files contained in the log file */
    while ((ret = darshan_log_getfile(logfile_fd, &job, &next_file)) > 0)
    {
        /* generate all i/o events contained in this independent file */
        if (next_file.rank == rank)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);

            /* generate i/o events and store them in this rank's workload context */
145
            generate_psx_ind_file_events(&next_file, my_ctx);
146
147
148
149
150
151
        }
        /* generate all i/o events involving this rank in this collective file */
        else if (next_file.rank == -1)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);
152
153
154

            /* generate collective i/o events and store them in the rank context */
            generate_psx_coll_file_events(&next_file, my_ctx, job.nprocs, d_params->aggregator_cnt);
155
156
157
158
159
        }
    }
    if (ret < 0)
        return -1;

160
    darshan_log_close(logfile_fd);
161

162
163
164
165
166
167
168
169
170
171
172
173
174
    /* finalize the rank's i/o context so i/o ops may be retrieved later (in order) */
    darshan_finalize_io_op_dat(my_ctx->io_op_dat);

    /* initialize the hash table of rank contexts, if it has not been initialized */
    if (!rank_tbl)
    {
        rank_tbl = qhash_init(darshan_rank_hash_compare, quickhash_64bit_hash, RANK_HASH_TABLE_SIZE);
        if (!rank_tbl)
            return -1;
    }

    /* add this rank context to the hash table */
    qhash_add(rank_tbl, &(my_ctx->my_rank), &(my_ctx->hash_link));
175
    rank_tbl_pop++;
176

177
178
179
180
181
182
    return 0;
}

/* pull the next event (independent or collective) for this rank from its event context */
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op)
{
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    int64_t my_rank = (int64_t)rank;
    struct qhash_head *hash_link = NULL;
    struct rank_io_context *tmp = NULL;
    struct darshan_io_op next_io_op;

    /* find i/o context for this rank in the rank hash table */
    hash_link = qhash_search(rank_tbl, &my_rank);

    /* terminate the workload if there is no valid rank context */
    if (!hash_link)
    {
        op->op_type = CODES_WK_END;
        return;
    }

    /* get access to the rank's io_context data */
    tmp = qhash_entry(hash_link, struct rank_io_context, hash_link);
    assert(tmp->my_rank == my_rank);

    /* get the next darshan i/o op out of this rank's context */
    darshan_remove_next_io_op(tmp->io_op_dat, &next_io_op, tmp->last_op_time);

    /* free the rank's i/o context if this is the last i/o op */
    if (next_io_op.codes_op.op_type == CODES_WK_END)
    {
        qhash_del(hash_link);
        free(tmp);
210
211
212
213
 
        rank_tbl_pop--;
        if (!rank_tbl_pop)
            qhash_finalize(rank_tbl);
214
215
216
217
218
219
220
221
222
    }
    else
    {
        /* else, set the last op time to be the end of the returned op */
        tmp->last_op_time = next_io_op.end_time;
    }

    /* return the codes op contained in the darshan i/o op */
    *op = next_io_op.codes_op;
223
224
225
226

    return;
}

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* comparison function for comparing two hash keys (used for storing multiple io contexts) */
static int darshan_rank_hash_compare(
    void *key, struct qhash_head *link)
{
    int64_t *in_rank = (int64_t *)key;
    struct rank_io_context *tmp;

    tmp = qhash_entry(link, struct rank_io_context, hash_link);
    if (tmp->my_rank == *in_rank)
        return 1;

    return 0;
}

/*****************************************/
/*                                       */
/*   Darshan I/O op storage abstraction  */
/*                                       */
/*****************************************/

#define DARSHAN_IO_OP_INC_CNT 100000

/* dynamically allocated array data structure for storing darshan i/o events */
struct darshan_io_dat_array
{
    struct darshan_io_op *op_array;
    int64_t op_arr_ndx;
    int64_t op_arr_cnt;
};

/* initialize the dynamic array data structure */
static void *darshan_init_io_op_dat()
{
    struct darshan_io_dat_array *tmp;

    /* initialize the array data structure */
    tmp = malloc(sizeof(struct darshan_io_dat_array));
    assert(tmp);
    tmp->op_array = malloc(DARSHAN_IO_OP_INC_CNT * sizeof(struct darshan_io_op));
    assert(tmp->op_array);
    tmp->op_arr_ndx = 0;
    tmp->op_arr_cnt = DARSHAN_IO_OP_INC_CNT;

    /* return the array info for this rank's i/o context */
    return (void *)tmp;
}

/* store the i/o event in this rank's i/o context */
static void darshan_insert_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;
    struct darshan_io_op *tmp;

    /* realloc array if it is already full */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        tmp = malloc((array->op_arr_cnt + DARSHAN_IO_OP_INC_CNT) * sizeof(struct darshan_io_op));
        assert(tmp);
        memcpy(tmp, array->op_array, array->op_arr_cnt * sizeof(struct darshan_io_op));
        free(array->op_array);
        array->op_array = tmp;
        array->op_arr_cnt += DARSHAN_IO_OP_INC_CNT;
    }

    /* add the darshan i/o op to the array */
    array->op_array[array->op_arr_ndx++] = *io_op;

    return;
}

/* pull the next i/o event out of this rank's i/o context */
static void darshan_remove_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op, double last_op_time)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* if the array has been scanned completely already */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        /* no more events just end the workload */
        io_op->codes_op.op_type = CODES_WK_END;

        /* free data structures */
        free(array->op_array);
        free(array);
    }
    else
    {
        struct darshan_io_op *tmp = &(array->op_array[array->op_arr_ndx]);

        if ((tmp->start_time - last_op_time) < DARSHAN_NEGLIGIBLE_DELAY)
        {
            /* there is no delay, just return the next op in the array */
            *io_op = *tmp;
            array->op_arr_ndx++;
        }
        else
        {
            /* there is a nonnegligible delay, so generate and return a delay event */
            io_op->codes_op.op_type = CODES_WK_DELAY;
            io_op->codes_op.u.delay.seconds = tmp->start_time - last_op_time;
            io_op->start_time = last_op_time;
            io_op->end_time = tmp->start_time;
        }
    }
}

/* sort the dynamic array in order of i/o op start time */
static void darshan_finalize_io_op_dat(
    void *io_op_dat)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* sort this rank's i/o op list */
    qsort(array->op_array, array->op_arr_ndx, sizeof(struct darshan_io_op), darshan_io_op_compare);
    array->op_arr_cnt = array->op_arr_ndx;
    array->op_arr_ndx = 0;

    return;
}

/* comparison function for sorting darshan_io_ops in order of start timestamps */
static int darshan_io_op_compare(
    const void *p1, const void *p2)
{
    struct darshan_io_op *a = (struct darshan_io_op *)p1;
    struct darshan_io_op *b = (struct darshan_io_op *)p2;

    if (a->start_time < b->start_time)
        return -1;
    else if (a->start_time > b->start_time)
        return 1;
    else
        return 0;
}

/*****************************************/
/*                                       */
/* Darshan workload generation functions */
/*                                       */
/*****************************************/
369
370
371

/* generate events for an independently opened file, and store these events */
static void generate_psx_ind_file_events(
372
    struct darshan_file *file, struct rank_io_context *io_context)
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
{
    int64_t io_ops_this_cycle;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
    double delay_per_open;
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_open_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
    int create_flag;
    int64_t i;

    /* if the file was never really opened, just return because we have no timing info */
    if (file->counters[CP_POSIX_OPENS] == 0)
        return;

    /* determine delay available per open-io-close cycle */
    delay_per_open = (file->fcounters[CP_F_CLOSE_TIMESTAMP] - file->fcounters[CP_F_OPEN_TIMESTAMP] -
                     file->fcounters[CP_F_POSIX_READ_TIME] - file->fcounters[CP_F_POSIX_WRITE_TIME] -
                     file->fcounters[CP_F_POSIX_META_TIME]) / file->counters[CP_POSIX_OPENS];

    /* calculate synthetic delay values */
    calc_io_delays(file, file->counters[CP_POSIX_OPENS],
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES],
                   delay_per_open, &first_io_delay, &close_delay,
                   &inter_open_delay, &inter_io_delay);

    /* calculate average meta op time (for i/o and opens/closes) */
    /* TODO: this needs to be updated when we add in stat, seek, etc. */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

405
406
407
408
409
    /* set the create flag if the file was written to */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
410
411
412
413
414
415

    /* generate open/io/close events for all cycles */
    /* TODO: add stats */
    for (i = 0; file->counters[CP_POSIX_OPENS]; i++, file->counters[CP_POSIX_OPENS]--)
    {
        /* generate an open event */
416
        cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time, io_context);
417
418
419
420
421
422
423
424
425
426
427
        create_flag = 0;

        /* account for potential delay from first open to first io */
        cur_time += first_io_delay;

        io_ops_this_cycle = ceil((double)(file->counters[CP_POSIX_READS] +
                                 file->counters[CP_POSIX_WRITES]) /
                                 file->counters[CP_POSIX_OPENS]);

        /* perform the calculated number of i/o operations for this file open */
        cur_time = generate_psx_ind_io_events(file, io_ops_this_cycle, i, inter_io_delay,
428
                                              meta_op_time, cur_time, io_context);
429
430
431
432
433

        /* account for potential delay from last io to close */
        cur_time += close_delay;

        /* generate a close for the open event at the start of the loop */
434
        cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);
435
436
437
438
439
440
441

        /* account for potential interopen delay if more than one open */
        if (file->counters[CP_POSIX_OPENS] > 1)
        {
            cur_time += inter_open_delay;
        }
    }
442
443
444
445
446
447
448
449
450

    return;
}

/* generate events for the i/o ops stored in a collectively opened file for this rank */
void generate_psx_coll_file_events(
    struct darshan_file *file, struct rank_io_context *io_context,
    int64_t nprocs, int64_t in_agg_cnt)
{
451
452
453
454
455
    int64_t open_cycles;
    int64_t total_ind_opens;
    int64_t total_coll_opens;
    int64_t ind_opens_this_cycle;
    int64_t coll_opens_this_cycle;
456
457
    int64_t extra_opens = 0;
    int64_t extra_io_ops = 0;
458
    int64_t total_io_ops = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    int64_t total_ind_io_ops;
    int64_t total_coll_io_ops;
    int64_t ind_io_ops_this_cycle;
    int64_t coll_io_ops_this_cycle;
    int64_t rank_cnt;
    int64_t aggregator_cnt;
    int create_flag = 0;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
    double delay_per_cycle;
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_cycle_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
    int64_t i, j;

    /* the collective file was never opened (i.e., just stat-ed), so return */
    if (!(file->counters[CP_POSIX_OPENS]))
        return;

    /*  in this case, posix opens are less than mpi opens...
     *  this is probably a mpi deferred open -- assume app will not use this, currently.
     */
    assert(file->counters[CP_POSIX_OPENS] >= nprocs);

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    if (file->counters[CP_COLL_OPENS] || file->counters[CP_INDEP_OPENS])
    {

    }
    else
    {
        extra_opens = file->counters[CP_POSIX_OPENS] % nprocs;
        if (extra_opens && ((file->counters[CP_POSIX_OPENS] / nprocs) % extra_opens))
        {
            extra_opens = 0;
        }
        else
        {
            extra_io_ops = total_io_ops % nprocs;
        }

        total_ind_opens = file->counters[CP_POSIX_OPENS] - extra_opens;
        total_coll_opens = 0;
        open_cycles = ceil((double)(total_ind_opens) / nprocs);
    }
    assert(extra_opens <= open_cycles);

506
507
508
509
510
    /* determine delay information */
    delay_per_cycle = (file->fcounters[CP_F_CLOSE_TIMESTAMP] -
                      file->fcounters[CP_F_OPEN_TIMESTAMP] -
                      (file->fcounters[CP_F_POSIX_READ_TIME] / nprocs) -
                      (file->fcounters[CP_F_POSIX_WRITE_TIME] / nprocs) -
511
                      (file->fcounters[CP_F_POSIX_META_TIME] / nprocs)) / open_cycles;
512
513
514
515
516

    /* calculate average meta op time (for i/o and opens/closes) */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

517
518
519
520
521
    /* it is rare to overwrite existing files, so set the create flag */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
522

523
524
    /* generate all events for this collectively opened file */
    for (i = 0; i < open_cycles; i++)
525
    {
526
527
528
        if (file->counters[CP_COLL_OPENS])
        {

529
530
531
        }
        else
        {
532
533
534
535
            ind_opens_this_cycle = ceil((double)total_ind_opens / open_cycles);
            coll_opens_this_cycle = 0;

            total_ind_opens -= ind_opens_this_cycle;
536
537
        }

538
539
540
541
        /* assign any extra opens to rank 0 (these may correspond to file creations or
         * header reads/writes)
         */
        if (extra_opens && !((open_cycles - i) % extra_opens))
542
        {
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
            assert(create_flag);
            file->rank = 0;

            cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time, io_context);
            create_flag = 0;

            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            file->rank = -1;
            file->counters[CP_POSIX_OPENS]--;
        }

        while (ind_opens_this_cycle > io_context->my_rank)
        {
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time,
                                               cur_time, io_context);
            create_flag = 0;

            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            if (ind_opens_this_cycle >= nprocs)
564
            {
565
566
                file->counters[CP_POSIX_OPENS] -= nprocs;
                ind_opens_this_cycle -= nprocs;
567
568
569
            }
            else
            {
570
571
                file->counters[CP_POSIX_OPENS] -= ind_opens_this_cycle;
                ind_opens_this_cycle = 0;
572
573
574
            }
        }

575
        while (coll_opens_this_cycle)
576
577
        {

578
        }
579
580
    }

581
#if 0
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        if (file->counters[CP_COLL_OPENS])
            aggregator_cnt = in_agg_cnt;
        else
            aggregator_cnt = nprocs;

        /* assign any determined 'extra' opens to rank 0 at the beginning of the cycle */
        if (extra_opens && !(i % extra_open_stride))
        {
            assert(create_flag);

            /* generate the open/close events for creating the collective file */
            file->rank = 0;
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time, io_context);

            ind_io_ops_this_cycle = ceil((double)extra_io_ops / extra_opens);

            cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle, 0, nprocs,
                                                   aggregator_cnt, i, 0.0, meta_op_time,
                                                   cur_time, io_context);
            extra_io_ops -= ind_io_ops_this_cycle;

            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);
            create_flag = 0;
            file->rank = -1;
            file->counters[CP_POSIX_OPENS]--;
            extra_opens--;
        }

        if (file->counters[CP_POSIX_OPENS] >= nprocs)
        {
            if (file->counters[CP_COLL_OPENS])
            {
                if (file->counters[CP_INDEP_OPENS] && !(i % ind_open_stride))
                {
                    rank_cnt = ceil((double)file->counters[CP_INDEP_OPENS] /
                                    (file->counters[CP_COLL_OPENS] / nprocs));
                    for (j = 0; j < rank_cnt; j++)
                    {
                        file->rank = j;
                        if (j != (rank_cnt - 1))
                            generate_psx_open_event(file, 0, meta_op_time, cur_time, io_context);
                        else
                            cur_time = generate_psx_open_event(file, 0, meta_op_time,
                                                               cur_time, io_context);
                    }

                    ind_io_ops_this_cycle = ceil(((double)total_ind_io_ops /
                                            file->counters[CP_INDEP_OPENS]) * rank_cnt);

                    cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle, 0,
                                                           nprocs, aggregator_cnt, i, 0.0,
                                                           meta_op_time, cur_time, io_context);
                    total_ind_io_ops -= ind_io_ops_this_cycle;

                    for (j = 0; j < rank_cnt; j++)
                    {
                        file->rank = j;
                        if (j != (rank_cnt - 1))
                            generate_psx_close_event(file, meta_op_time, cur_time, io_context);
                        else
                            cur_time = generate_psx_close_event(file, meta_op_time,
                                                                cur_time, io_context);
                    }
                    file->rank = -1;
                    file->counters[CP_INDEP_OPENS] -= rank_cnt;
                    file->counters[CP_POSIX_OPENS] -= rank_cnt;
                }

                cur_time = generate_barrier_event(file, 0, cur_time, io_context);

                coll_io_ops_this_cycle = ceil((double)total_coll_io_ops /
                                         (file->counters[CP_COLL_OPENS] / nprocs));
                if (file->counters[CP_INDEP_OPENS])
                    ind_io_ops_this_cycle = 0;
                else
                    ind_io_ops_this_cycle = ceil((double)total_ind_io_ops /
                                            (file->counters[CP_POSIX_OPENS] / nprocs));
            }
            else
            {
                coll_io_ops_this_cycle = 0;
                ind_io_ops_this_cycle = ceil((double)total_ind_io_ops /
                                        (file->counters[CP_POSIX_OPENS] / nprocs));
            }

            /* perform an open across all ranks (rank == -1) */
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time,
                                               cur_time, io_context);
            create_flag = 0;

            /* account for potential delay between the open and first i/o */
            cur_time += first_io_delay;

            /* generate the io events */
            cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle,
                                                   coll_io_ops_this_cycle, nprocs, aggregator_cnt,
                                                   i, inter_io_delay, meta_op_time,
                                                   cur_time, io_context);
            total_ind_io_ops -= ind_io_ops_this_cycle;
            total_coll_io_ops -= coll_io_ops_this_cycle;

            /* account for potential delay between last i/o operation and file close */
            cur_time += close_delay;
            
            /* generate the corresponding close event for the open at the start of the loop */
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            file->counters[CP_POSIX_OPENS] -= nprocs;
            if (file->counters[CP_COLL_OPENS])
                file->counters[CP_COLL_OPENS] -= nprocs;

            /* account for any delay between open-close cycles */
            if (file->counters[CP_POSIX_OPENS])
                cur_time += inter_cycle_delay;
        }
        else
        {
            /* open the file across participating ranks */
            rank_cnt = file->counters[CP_POSIX_OPENS];
            for (j = 0; j < rank_cnt; j++)
            {
                file->rank = j;
                if (j != (rank_cnt - 1))
                    generate_psx_open_event(file, 0, meta_op_time, cur_time, io_context);
                else
                    cur_time = generate_psx_open_event(file, 0, meta_op_time, cur_time, io_context);
            }

            /* account for potential delay between the open and first i/o */
            cur_time += first_io_delay;

            ind_io_ops_this_cycle = ceil((double)total_ind_io_ops /
                                         (file->counters[CP_POSIX_OPENS] / nprocs));

            cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle, 0, nprocs,
                                                   rank_cnt, i, inter_io_delay, meta_op_time,
                                                   cur_time, io_context);
            total_ind_io_ops -= ind_io_ops_this_cycle;

            /* account for potential delay between last i/o operation and file close */
            cur_time += close_delay;

            /* close the file across participating ranks */
            for (j = 0; j < rank_cnt; j++)
            {
                file->rank = j;
                if (j != (rank_cnt - 1))
                    generate_psx_close_event(file, meta_op_time, cur_time, io_context);
                else
                    cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);
            }
            file->rank = -1;
            file->counters[CP_POSIX_OPENS] -= rank_cnt;
        }
    }
737
#endif
738
739
740
741
742
743

    return;
}

/* fill in an open event structure and store it with the rank context */
static double generate_psx_open_event(
744
745
    struct darshan_file *file, int create_flag, double meta_op_time,
    double cur_time, struct rank_io_context *io_context)
746
{
747
748
749
750
751
752
753
    struct darshan_io_op next_io_op = 
    {
        .codes_op.op_type = CODES_WK_OPEN,
        .codes_op.u.open.file_id = file->hash,
        .codes_op.u.open.create_flag = create_flag,
        .start_time = cur_time
    };
754
755
756

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
757
    next_io_op.end_time = cur_time;
758

759
760
761
    /* store the open event (if this rank performed it) */
    if ((file->rank == io_context->my_rank) || (file->rank == -1))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
762
763
764
765
766
767

    return cur_time;
}

/* fill in a close event structure and store it with the rank context */
static double generate_psx_close_event(
768
769
    struct darshan_file *file, double meta_op_time, double cur_time,
    struct rank_io_context *io_context)
770
{
771
772
773
774
775
776
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_CLOSE,
        .codes_op.u.close.file_id = file->hash,
        .start_time = cur_time
    };
777
778
779

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
780
    next_io_op.end_time = cur_time;
781

782
783
784
    /* store the close event (if this rank performed it) */
    if ((file->rank == io_context->my_rank) || (file->rank == -1))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
785
786
787
788
789
790

    return cur_time;
}

/* fill in a barrier event structure and store it with the rank context */
static double generate_barrier_event(
791
    struct darshan_file *file, int64_t root, double cur_time, struct rank_io_context *io_context)
792
{
793
794
795
796
797
798
799
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_BARRIER, 
        .codes_op.u.barrier.count = -1, /* all processes */
        .codes_op.u.barrier.root = root,
        .start_time = cur_time
    };
800
801

    cur_time += .000001; /* small synthetic delay representing time to barrier */
802
    next_io_op.end_time = cur_time;
803

804
805
806
    /* store the barrier event */
    if ((file->rank == -1) || (file->rank == io_context->my_rank))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
807
808
809
810
811
812
813

    return cur_time;
}

/* generate all i/o events for one independent file open and store them with the rank context */
static double generate_psx_ind_io_events(
    struct darshan_file *file, int64_t io_ops_this_cycle, int64_t open_ndx,
814
    double inter_io_delay, double meta_op_time, double cur_time, struct rank_io_context *io_context)
815
816
817
818
819
820
821
822
823
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    double io_op_time;
    size_t io_sz;
    off_t io_off;
    int64_t i;
824
    struct darshan_io_op next_io_op;
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

    /* if there are no i/o ops, just return immediately */
    if (!io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

        /* determine how many io ops to do before next rw switch */
        if (!rw)
            io_ops_this_rw = file->counters[CP_POSIX_READS] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        else
            io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);

        /* initialize the rd and wr bandwidth values using total io size and time */
        if (file->fcounters[CP_F_POSIX_READ_TIME])
            rd_bw = file->counters[CP_BYTES_READ] / file->fcounters[CP_F_POSIX_READ_TIME];
        if (file->fcounters[CP_F_POSIX_WRITE_TIME])
            wr_bw = file->counters[CP_BYTES_WRITTEN] / file->fcounters[CP_F_POSIX_WRITE_TIME];
    }

    /* loop to generate all reads/writes for this open/close sequence */
    for (i = 0; i < io_ops_this_cycle; i++)
    {
        /* calculate what value to use for i/o size and offset */
        determine_io_params(file, rw, 0, file->counters[CP_POSIX_OPENS], &io_sz, &io_off);
        if (!rw)
        {
            /* generate a read event */
865
866
867
868
869
            next_io_op.codes_op.op_type = CODES_WK_READ;
            next_io_op.codes_op.u.read.file_id = file->hash;
            next_io_op.codes_op.u.read.size = io_sz;
            next_io_op.codes_op.u.read.offset = io_off;
            next_io_op.start_time = cur_time;
870
871
872
873
874

            /* set the end time based on observed bandwidth and io size */
            if (rd_bw == 0.0)
                io_op_time = 0.0;
            else
875
                io_op_time = (io_sz / rd_bw);
876
877
878

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
879
            next_io_op.end_time = cur_time;
880
881
882
883
884
            file->counters[CP_POSIX_READS]--;
        }
        else
        {
            /* generate a write event */
885
886
887
888
889
            next_io_op.codes_op.op_type = CODES_WK_WRITE;
            next_io_op.codes_op.u.write.file_id = file->hash;
            next_io_op.codes_op.u.write.size = io_sz;
            next_io_op.codes_op.u.write.offset = io_off;
            next_io_op.start_time = cur_time;
890
891
892
893
894

            /* set the end time based on observed bandwidth and io size */
            if (wr_bw == 0.0)
                io_op_time = 0.0;
            else
895
                io_op_time = (io_sz / wr_bw);
896
897
898

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
899
            next_io_op.end_time = cur_time;
900
901
902
903
904
905
906
            file->counters[CP_POSIX_WRITES]--;
        }
        psx_rw_ops_remaining--;
        io_ops_this_rw--;
        assert(file->counters[CP_POSIX_READS] >= 0);
        assert(file->counters[CP_POSIX_WRITES] >= 0);

907
908
        /* store the i/o event */
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

        /* determine whether to toggle between reads and writes */
        if (!io_ops_this_rw && psx_rw_ops_remaining)
        {
            /* toggle the read/write flag */
            rw ^= 1;
            file->counters[CP_RW_SWITCHES]--;

            /* determine how many io ops to do before next rw switch */
            if (!rw)
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        }

        if (i != (io_ops_this_cycle - 1))
        {
            /* update current time to account for possible delay between i/o operations */
929
            cur_time += inter_io_delay;
930
931
932
933
934
935
936
937
938
939
940
941
        }
    }

    /* reset the static rw flag if this is the last open-close cycle for this file */
    if (file->counters[CP_POSIX_OPENS] == 1)
    {
        rw = -1;
    }

    return cur_time;
}

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
static double generate_psx_coll_io_events(
    struct darshan_file *file, int64_t ind_io_ops_this_cycle, int64_t coll_io_ops_this_cycle,
    int64_t nprocs, int64_t aggregator_cnt, int64_t open_ndx, double inter_io_delay,
    double meta_op_time, double cur_time, struct rank_io_context *io_context)
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    int64_t total_io_ops_this_cycle = ind_io_ops_this_cycle + coll_io_ops_this_cycle;
    int64_t total_coll_io_ops =
            (file->counters[CP_COLL_READS] + file->counters[CP_COLL_WRITES]) / nprocs;
    int64_t tmp_rank;
    int64_t next_ind_io_rank = 0;
    int64_t io_cnt;
    int64_t ranks_per_aggregator = nprocs / aggregator_cnt;
    int64_t ind_ops_so_far = 0;
    double ind_coll_switch;
    double io_op_time;
    double max_cur_time = 0.0;
    int ind_coll;
    size_t io_sz;
    off_t io_off;
    int64_t i, j;
    struct darshan_io_op next_io_op;

    if (!total_io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

        /* determine how many io ops to do before next rw switch */
        if (!rw)
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_READS] / nprocs) + file->counters[CP_INDEP_READS]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
        }
        else
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_WRITES] / nprocs) + file->counters[CP_INDEP_WRITES]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
For faster browsing, not all history is shown. View entire blame