darshan-mpi-io.c 77.1 KB
Newer Older
1 2 3 4 5
/*
 *  (C) 2009 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

6 7 8
#define _XOPEN_SOURCE 500
#define _GNU_SOURCE /* for tdestroy() */

9
#include "darshan-runtime-config.h"
10

11
#include <stdio.h>
12
#ifdef HAVE_MNTENT_H
13
#include <mntent.h>
14
#endif
15 16 17 18 19 20 21
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <limits.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
22
#include <sys/stat.h>
23
#include <sys/vfs.h>
24 25 26 27 28 29
#include <zlib.h>
#include <assert.h>
#include <search.h>

#include "mpi.h"
#include "darshan.h"
30
#include "darshan-dynamic.h"
31

32 33 34 35 36
extern char* __progname;

/* maximum number of memory segments each process will write to the log */
#define CP_MAX_MEM_SEGMENTS 8

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* Some old versions of MPI don't provide all of these COMBINER definitions.  
 * If any are missing then we define them to an arbitrary value just to 
 * prevent compile errors in DATATYPE_INC().
 */
#ifndef MPI_COMBINER_NAMED
    #define MPI_COMBINER_NAMED CP_COMBINER_NAMED
#endif
#ifndef MPI_COMBINER_DUP
    #define MPI_COMBINER_DUP CP_COMBINER_DUP
#endif
#ifndef MPI_COMBINER_CONTIGUOUS
    #define MPI_COMBINER_CONTIGUOUS CP_COMBINER_CONTIGUOUS
#endif
#ifndef MPI_COMBINER_VECTOR
    #define MPI_COMBINER_VECTOR CP_COMBINER_VECTOR
#endif
#ifndef MPI_COMBINER_HVECTOR_INTEGER
    #define MPI_COMBINER_HVECTOR_INTEGER CP_COMBINER_HVECTOR_INTEGER
#endif
#ifndef MPI_COMBINER_HVECTOR
    #define MPI_COMBINER_HVECTOR CP_COMBINER_HVECTOR
#endif
#ifndef MPI_COMBINER_INDEXED
    #define MPI_COMBINER_INDEXED CP_COMBINER_INDEXED
#endif
#ifndef MPI_COMBINER_HINDEXED_INTEGER
    #define MPI_COMBINER_HINDEXED_INTEGER CP_COMBINER_HINDEXED_INTEGER
#endif
#ifndef MPI_COMBINER_HINDEXED
    #define MPI_COMBINER_HINDEXED CP_COMBINER_HINDEXED
#endif
#ifndef MPI_COMBINER_INDEXED_BLOCK
    #define MPI_COMBINER_INDEXED_BLOCK CP_COMBINER_INDEXED_BLOCK
#endif
#ifndef MPI_COMBINER_STRUCT_INTEGER
    #define MPI_COMBINER_STRUCT_INTEGER CP_COMBINER_STRUCT_INTEGER
#endif
#ifndef MPI_COMBINER_STRUCT
    #define MPI_COMBINER_STRUCT CP_COMBINER_STRUCT
#endif
#ifndef MPI_COMBINER_SUBARRAY
    #define MPI_COMBINER_SUBARRAY CP_COMBINER_SUBARRAY
#endif
#ifndef MPI_COMBINER_DARRAY
    #define MPI_COMBINER_DARRAY CP_COMBINER_DARRAY
#endif
#ifndef MPI_COMBINER_F90_REAL
    #define MPI_COMBINER_F90_REAL CP_COMBINER_F90_REAL
#endif
#ifndef MPI_COMBINER_F90_COMPLEX
    #define MPI_COMBINER_F90_COMPLEX CP_COMBINER_F90_COMPLEX
#endif
#ifndef MPI_COMBINER_F90_INTEGER
    #define MPI_COMBINER_F90_INTEGER CP_COMBINER_F90_INTEGER
#endif
#ifndef MPI_COMBINER_RESIZED
    #define MPI_COMBINER_RESIZED CP_COMBINER_RESIZED
#endif

96 97
#define CP_DATATYPE_INC(__file, __datatype) do {\
    int num_integers, num_addresses, num_datatypes, combiner, ret; \
98 99
    ret = DARSHAN_MPI_CALL(PMPI_Type_get_envelope)(__datatype, &num_integers, \
        &num_addresses, &num_datatypes, &combiner); \
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if(ret == MPI_SUCCESS) { \
        switch(combiner) { \
            case MPI_COMBINER_NAMED:\
                CP_INC(__file,CP_COMBINER_NAMED,1); break; \
            case MPI_COMBINER_DUP:\
                CP_INC(__file,CP_COMBINER_DUP,1); break; \
            case MPI_COMBINER_CONTIGUOUS:\
                CP_INC(__file,CP_COMBINER_CONTIGUOUS,1); break; \
            case MPI_COMBINER_VECTOR:\
                CP_INC(__file,CP_COMBINER_VECTOR,1); break; \
            case MPI_COMBINER_HVECTOR_INTEGER:\
                CP_INC(__file,CP_COMBINER_HVECTOR_INTEGER,1); break; \
            case MPI_COMBINER_HVECTOR:\
                CP_INC(__file,CP_COMBINER_HVECTOR,1); break; \
            case MPI_COMBINER_INDEXED:\
                CP_INC(__file,CP_COMBINER_INDEXED,1); break; \
            case MPI_COMBINER_HINDEXED_INTEGER:\
                CP_INC(__file,CP_COMBINER_HINDEXED_INTEGER,1); break; \
            case MPI_COMBINER_HINDEXED:\
                CP_INC(__file,CP_COMBINER_HINDEXED,1); break; \
            case MPI_COMBINER_INDEXED_BLOCK:\
                CP_INC(__file,CP_COMBINER_INDEXED_BLOCK,1); break; \
            case MPI_COMBINER_STRUCT_INTEGER:\
                CP_INC(__file,CP_COMBINER_STRUCT_INTEGER,1); break; \
            case MPI_COMBINER_STRUCT:\
                CP_INC(__file,CP_COMBINER_STRUCT,1); break; \
            case MPI_COMBINER_SUBARRAY:\
                CP_INC(__file,CP_COMBINER_SUBARRAY,1); break; \
            case MPI_COMBINER_DARRAY:\
                CP_INC(__file,CP_COMBINER_DARRAY,1); break; \
            case MPI_COMBINER_F90_REAL:\
                CP_INC(__file,CP_COMBINER_F90_REAL,1); break; \
            case MPI_COMBINER_F90_COMPLEX:\
                CP_INC(__file,CP_COMBINER_F90_COMPLEX,1); break; \
            case MPI_COMBINER_F90_INTEGER:\
                CP_INC(__file,CP_COMBINER_F90_INTEGER,1); break; \
            case MPI_COMBINER_RESIZED:\
                CP_INC(__file,CP_COMBINER_RESIZED,1); break; \
        } \
    } \
} while(0)

#define CP_RECORD_MPI_WRITE(__ret, __fh, __count, __datatype, __counter, __tm1, __tm2) do { \
    struct darshan_file_runtime* file; \
    int size = 0; \
    MPI_Aint extent = 0; \
    if(__ret != MPI_SUCCESS) break; \
    file = darshan_file_by_fh(__fh); \
    if(!file) break; \
149
    DARSHAN_MPI_CALL(PMPI_Type_size)(__datatype, &size);  \
150
    size = size * __count; \
151
    DARSHAN_MPI_CALL(PMPI_Type_extent)(__datatype, &extent); \
152 153 154 155
    CP_BUCKET_INC(file, CP_SIZE_WRITE_AGG_0_100, size); \
    CP_BUCKET_INC(file, CP_EXTENT_WRITE_0_100, extent); \
    CP_INC(file, __counter, 1); \
    CP_DATATYPE_INC(file, __datatype); \
156
    CP_F_INC_NO_OVERLAP(file, __tm1, __tm2, file->last_mpi_write_end, CP_F_MPI_WRITE_TIME); \
157 158 159 160 161 162 163 164 165 166 167 168
    if(CP_F_VALUE(file, CP_F_WRITE_START_TIMESTAMP) == 0) \
        CP_F_SET(file, CP_F_WRITE_START_TIMESTAMP, __tm1); \
    CP_F_SET(file, CP_F_WRITE_END_TIMESTAMP, __tm2); \
} while(0)

#define CP_RECORD_MPI_READ(__ret, __fh, __count, __datatype, __counter, __tm1, __tm2) do { \
    struct darshan_file_runtime* file; \
    int size = 0; \
    MPI_Aint extent = 0; \
    if(__ret != MPI_SUCCESS) break; \
    file = darshan_file_by_fh(__fh); \
    if(!file) break; \
169
    DARSHAN_MPI_CALL(PMPI_Type_size)(__datatype, &size);  \
170
    size = size * __count; \
171
    DARSHAN_MPI_CALL(PMPI_Type_extent)(__datatype, &extent); \
172 173 174 175
    CP_BUCKET_INC(file, CP_SIZE_READ_AGG_0_100, size); \
    CP_BUCKET_INC(file, CP_EXTENT_READ_0_100, extent); \
    CP_INC(file, __counter, 1); \
    CP_DATATYPE_INC(file, __datatype); \
176
    CP_F_INC_NO_OVERLAP(file, __tm1, __tm2, file->last_mpi_read_end, CP_F_MPI_READ_TIME); \
177 178 179 180 181
    if(CP_F_VALUE(file, CP_F_READ_START_TIMESTAMP) == 0) \
        CP_F_SET(file, CP_F_READ_START_TIMESTAMP, __tm1); \
    CP_F_SET(file, CP_F_READ_END_TIMESTAMP, __tm2); \
} while(0)

182
static void cp_normalize_timestamps(struct darshan_job_runtime* final_job);
183 184 185
static void cp_log_construct_indices(struct darshan_job_runtime* final_job,
    int rank, int* inout_count, int* lengths, void** pointers, char*
    trailing_data);
186
static int cp_log_write(struct darshan_job_runtime* final_job, int rank, 
187
    char* logfile_name, int count, int* lengths, void** pointers, double start_log_time);
188
static void cp_log_record_hints_and_ver(struct darshan_job_runtime* final_job, int rank);
189
static int cp_log_reduction(struct darshan_job_runtime* final_job, int rank, 
190
    char* logfile_name, MPI_Offset* next_offset);
191 192 193 194 195 196
static void darshan_file_reduce(void* infile_v, 
    void* inoutfile_v, int *len, 
    MPI_Datatype *datatype);
static int cp_log_compress(struct darshan_job_runtime* final_job,
    int rank, int* inout_count, int* lengths, void** pointers);
static int file_compare(const void* a, const void* b);
197 198 199 200 201 202
static int darshan_file_variance(
    struct darshan_file *infile_array,
    struct darshan_file *outfile_array,
    int count, int rank);
static void pairwise_variance_reduce (
    void *invec, void *inoutvec, int *len, MPI_Datatype *dt);
203
#if 0
204
static void debug_mounts(const char* mtab_file, const char* out_file);
205
#endif
206

207 208 209
static struct darshan_file_runtime* darshan_file_by_fh(MPI_File fh);
static void darshan_file_close_fh(MPI_File fh);
static struct darshan_file_runtime* darshan_file_by_name_setfh(const char* name, MPI_File fh);
210

211
#define CP_MAX_MNTS 64
212 213 214
#define CP_MAX_MNT_PATH 256
#define CP_MAX_MNT_TYPE 32
struct mnt_data
215
{
216 217 218 219 220 221 222
    int64_t hash;
    int64_t block_size;
    char path[CP_MAX_MNT_PATH];
    char type[CP_MAX_MNT_TYPE];
};
static struct mnt_data mnt_data_array[CP_MAX_MNTS];
static int mnt_data_count = 0;
223

224 225 226 227 228 229 230
struct variance_dt
{
    double n;
    double T;
    double S;
};

231
void darshan_mpi_initialize(int *argc, char ***argv)
232 233 234
{
    int nprocs;
    int rank;
235 236
    int timing_flag = 0;
    double init_start, init_time, init_max;
237

238 239
    DARSHAN_MPI_CALL(PMPI_Comm_size)(MPI_COMM_WORLD, &nprocs);
    DARSHAN_MPI_CALL(PMPI_Comm_rank)(MPI_COMM_WORLD, &rank);
240 241 242 243 244 245
    
    if(getenv("DARSHAN_INTERNAL_TIMING"))
        timing_flag = 1;

    if(timing_flag)
        init_start = DARSHAN_MPI_CALL(PMPI_Wtime)();
246 247 248 249 250 251 252 253 254 255

    if(argc && argv)
    {
        darshan_initialize(*argc, *argv, nprocs, rank);
    }
    else
    {
        /* we don't see argc and argv here in fortran */
        darshan_initialize(0, NULL, nprocs, rank);
    }
256 257 258 259 260 261 262 263 264 265 266 267
    
    if(timing_flag)
    {
        init_time = DARSHAN_MPI_CALL(PMPI_Wtime)() - init_start;
        DARSHAN_MPI_CALL(PMPI_Reduce)(&init_time, &init_max, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
        if(rank == 0)
        {
            printf("#darshan:<op>\t<nprocs>\t<time>\n");
            printf("darshan:init\t%d\t%f\n", nprocs, init_max);
        }
    }
268

269
    return;
270 271 272 273 274 275 276 277 278 279 280 281
}

void darshan_shutdown(int timing_flag)
{
    int rank;
    char* logfile_name;
    struct darshan_job_runtime* final_job;
    double start_log_time = 0;
    int all_ret = 0;
    int local_ret = 0;
    MPI_Offset next_offset = 0;
    char* jobid_str;
282 283
    char* envjobid;
    char* logpath;
284 285 286 287 288 289
    int jobid;
    int index_count = 0;
    int lengths[CP_MAX_MEM_SEGMENTS];
    void* pointers[CP_MAX_MEM_SEGMENTS];
    int ret;
    double red1=0, red2=0, gz1=0, gz2=0, write1=0, write2=0, tm_end=0;
290
    double bcst=0;
291
    int nprocs;
292
    time_t start_time_tmp = 0;
293 294
    uint64_t logmod;
    char hname[HOST_NAME_MAX];
295 296 297 298 299
    char* logpath_override = NULL;
#ifdef __CP_LOG_ENV
    char env_check[256];
    char* env_tok;
#endif
300
    uint64_t hlevel;
301 302 303 304 305

    CP_LOCK();
    if(!darshan_global_job)
    {
        CP_UNLOCK();
306
        return;
307 308 309 310 311 312 313 314
    }
    /* disable further tracing while hanging onto the data so that we can
     * write it out
     */
    final_job = darshan_global_job;
    darshan_global_job = NULL;
    CP_UNLOCK();

315
    start_log_time = DARSHAN_MPI_CALL(PMPI_Wtime)();
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

    /* figure out which access sizes to log */
    darshan_walk_file_accesses(final_job);

    /* if the records have been condensed, then zero out fields that are no
     * longer valid for safety 
     */
    if(final_job->flags & CP_FLAG_CONDENSED && final_job->file_count)
    {
        CP_SET(&final_job->file_runtime_array[0], CP_MODE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_CONSEC_READS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_CONSEC_WRITES, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_SEQ_READS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_SEQ_WRITES, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE1_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE2_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE3_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE4_STRIDE, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE1_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE2_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE3_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_STRIDE4_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS1_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS2_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS3_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS4_ACCESS, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS1_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS2_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS3_COUNT, 0);
        CP_SET(&final_job->file_runtime_array[0], CP_ACCESS4_COUNT, 0);
        
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_OPEN_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_CLOSE_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_READ_START_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_READ_END_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_WRITE_START_TIMESTAMP, 0);
        CP_F_SET(&final_job->file_runtime_array[0], CP_F_WRITE_END_TIMESTAMP, 0);
    }

    logfile_name = malloc(PATH_MAX);
    if(!logfile_name)
    {
        darshan_finalize(final_job);
        return;
    }

362
    DARSHAN_MPI_CALL(PMPI_Comm_rank)(MPI_COMM_WORLD, &rank);
363 364 365 366 367 368 369

    /* construct log file name */
    if(rank == 0)
    {
        char cuser[L_cuserid] = {0};
        struct tm* my_tm;

370 371 372 373 374 375 376 377 378 379 380
        /* Use CP_JOBID_OVERRIDE for the env var or CP_JOBID */
        envjobid = getenv(CP_JOBID_OVERRIDE);
        if (!envjobid)
        {
            envjobid = CP_JOBID;
        }

        /* Use CP_LOG_PATH_OVERRIDE for the value or __CP_LOG_PATH */
        logpath = getenv(CP_LOG_PATH_OVERRIDE);
        if (!logpath)
        {
381
#ifdef __CP_LOG_PATH
382
            logpath = __CP_LOG_PATH;
383
#endif
384 385
        }

386
        /* find a job id */
387
        jobid_str = getenv(envjobid);
388 389 390 391 392 393 394 395 396 397 398 399
        if(jobid_str)
        {
            /* in cobalt we can find it in env var */
            ret = sscanf(jobid_str, "%d", &jobid);
        }
        if(!jobid_str || ret != 1)
        {
            /* use pid as fall back */
            jobid = getpid();
        }

        /* break out time into something human readable */
400 401
        start_time_tmp += final_job->log_job.start_time;
        my_tm = localtime(&start_time_tmp);
402

403 404 405 406 407 408 409 410 411 412 413
        /* get the username for this job.  In order we will try each of the
         * following until one of them succeeds:
         *
         * - cuserid()
         * - getenv("LOGNAME")
         * - snprintf(..., geteuid());
         *
         * Note that we do not use getpwuid() because it generally will not
         * work in statically compiled binaries.
         */

414
#ifndef DARSHAN_DISABLE_CUSERID
415
        cuserid(cuser);
416
#endif
417 418 419 420 421 422 423 424 425 426 427 428 429 430

        /* if cuserid() didn't work, then check the environment */
        if (strcmp(cuser, "") == 0)
        {
            char* logname_string;
            logname_string = getenv("LOGNAME");
            if(logname_string)
            {
                strncpy(cuser, logname_string, (L_cuserid-1));
            }

        }

        /* if cuserid() and environment both fail, then fall back to uid */
431 432 433 434 435
        if (strcmp(cuser, "") == 0)
        {
            uid_t uid = geteuid();
            snprintf(cuser, sizeof(cuser), "%u", uid);
        }
436

437
        /* generate a random number to help differentiate the log */
438
        hlevel=DARSHAN_MPI_CALL(PMPI_Wtime)() * 1000000;
439
        (void) gethostname(hname, sizeof(hname));
440
        logmod = darshan_hash((void*)hname,strlen(hname),hlevel);
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        /* see if darshan was configured using the --with-logpath-by-env
         * argument, which allows the user to specify an absolute path to
         * place logs via an env variable.
         */
#ifdef __CP_LOG_ENV
        /* just silently skip if the environment variable list is too big */
        if(strlen(__CP_LOG_ENV) < 256)
        {
            /* copy env variable list to a temporary buffer */
            strcpy(env_check, __CP_LOG_ENV);
            /* tokenize the comma-separated list */
            env_tok = strtok(env_check, ",");
            if(env_tok)
            {
                do
                {
                    /* check each env variable in order */
                    logpath_override = getenv(env_tok); 
                    if(logpath_override)
                    {
                        /* stop as soon as we find a match */
                        break;
                    }
                }while((env_tok = strtok(NULL, ",")));
            }
        }
#endif

470
       
471
        if(logpath_override)
472
        {
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
            ret = snprintf(logfile_name, PATH_MAX, 
                "%s/%s_%s_id%d_%d-%d-%d-%" PRIu64 ".darshan_partial",
                logpath_override, 
                cuser, __progname, jobid,
                (my_tm->tm_mon+1), 
                my_tm->tm_mday, 
                (my_tm->tm_hour*60*60 + my_tm->tm_min*60 + my_tm->tm_sec),
                logmod);
            if(ret == (PATH_MAX-1))
            {
                /* file name was too big; squish it down */
                snprintf(logfile_name, PATH_MAX,
                    "%s/id%d.darshan_partial",
                    logpath_override, jobid);
            }
        }
489
        else if(logpath)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
        {
            ret = snprintf(logfile_name, PATH_MAX, 
                "%s/%d/%d/%d/%s_%s_id%d_%d-%d-%d-%" PRIu64 ".darshan_partial",
                logpath, (my_tm->tm_year+1900), 
                (my_tm->tm_mon+1), my_tm->tm_mday, 
                cuser, __progname, jobid,
                (my_tm->tm_mon+1), 
                my_tm->tm_mday, 
                (my_tm->tm_hour*60*60 + my_tm->tm_min*60 + my_tm->tm_sec),
                logmod);
            if(ret == (PATH_MAX-1))
            {
                /* file name was too big; squish it down */
                snprintf(logfile_name, PATH_MAX,
                    "%s/id%d.darshan_partial",
                    logpath, jobid);
            }
507
        }
508 509 510 511
        else
        {
            logfile_name[0] = '\0';
        }
512 513 514

        /* add jobid */
        final_job->log_job.jobid = (int64_t)jobid;
515 516 517
    }

    /* broadcast log file name */
518
    bcst=DARSHAN_MPI_CALL(PMPI_Wtime)();
519 520
    DARSHAN_MPI_CALL(PMPI_Bcast)(logfile_name, PATH_MAX, MPI_CHAR, 0,
        MPI_COMM_WORLD);
521

522 523 524 525 526 527 528
    if(strlen(logfile_name) == 0)
    {
        /* failed to generate log file name */
        darshan_finalize(final_job);
	return;
    }

529 530 531 532
    final_job->log_job.end_time = time(NULL);

    /* reduce records for shared files */
    if(timing_flag)
533
        red1 = DARSHAN_MPI_CALL(PMPI_Wtime)();
534 535 536 537 538 539 540 541 542
    if(getenv("DARSHAN_DISABLE_SHARED_REDUCTION"))
    {
        local_ret = 0;
    }
    else
    {
        local_ret = cp_log_reduction(final_job, rank, logfile_name, 
            &next_offset);
    }
543
    if(timing_flag)
544 545
        red2 = DARSHAN_MPI_CALL(PMPI_Wtime)();
    DARSHAN_MPI_CALL(PMPI_Allreduce)(&local_ret, &all_ret, 1, MPI_INT, MPI_LOR, 
546 547
        MPI_COMM_WORLD);

548 549 550
    /* adjust timestamps in any remaining records */
    cp_normalize_timestamps(final_job);

551 552 553
    /* if we are using any hints to write the log file, then record those
     * hints in the log file header
     */
554
    cp_log_record_hints_and_ver(final_job, rank);
555

556 557 558 559
    if(all_ret == 0)
    {
        /* collect data to write from local process */
        cp_log_construct_indices(final_job, rank, &index_count, lengths, 
560
            pointers, final_job->trailing_data);
561 562 563 564 565 566
    }

    if(all_ret == 0)
    {
        /* compress data */
        if(timing_flag)
567
            gz1 = DARSHAN_MPI_CALL(PMPI_Wtime)();
568 569 570
        local_ret = cp_log_compress(final_job, rank, &index_count, 
            lengths, pointers);
        if(timing_flag)
571 572 573
            gz2 = DARSHAN_MPI_CALL(PMPI_Wtime)();
        DARSHAN_MPI_CALL(PMPI_Allreduce)(&local_ret, &all_ret, 1,
            MPI_INT, MPI_LOR, MPI_COMM_WORLD);
574 575 576 577 578 579
    }

    if(all_ret == 0)
    {
        /* actually write out log file */
        if(timing_flag)
580
            write1 = DARSHAN_MPI_CALL(PMPI_Wtime)();
581
        local_ret = cp_log_write(final_job, rank, logfile_name, 
582 583
            index_count, lengths, pointers, start_log_time);
        if(timing_flag)
584 585 586
            write2 = DARSHAN_MPI_CALL(PMPI_Wtime)();
        DARSHAN_MPI_CALL(PMPI_Allreduce)(&local_ret, &all_ret, 1,
            MPI_INT, MPI_LOR, MPI_COMM_WORLD);
587 588
    }

589
    if(rank == 0)
590
    {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        if(all_ret != 0)
        {
            fprintf(stderr, "darshan library warning: unable to write log file %s\n", logfile_name);
            /* if any process failed to write log, then delete the whole 
             * file so we don't leave corrupted results
             */
            unlink(logfile_name);
        }
        else
        {
            /* rename from *.darshan_partial to *-<logwritetime>.darshan.gz,
             * which indicates that this log file is complete and ready for
             * analysis
             */ 
            char* mod_index;
            double end_log_time;
            char* new_logfile_name;

            new_logfile_name = malloc(PATH_MAX);
            if(new_logfile_name)
            {
                new_logfile_name[0] = '\0';
                end_log_time = DARSHAN_MPI_CALL(PMPI_Wtime)();
                strcat(new_logfile_name, logfile_name);
                mod_index = strstr(new_logfile_name, ".darshan_partial");
                sprintf(mod_index, "_%d.darshan.gz", (int)(end_log_time-start_log_time+1));
                rename(logfile_name, new_logfile_name);
                /* set permissions on log file */
619 620 621
#ifdef __CP_GROUP_READABLE_LOGS
                chmod(new_logfile_name, (S_IRUSR|S_IRGRP)); 
#else
622
                chmod(new_logfile_name, (S_IRUSR)); 
623
#endif
624 625 626
                free(new_logfile_name);
            }
        }
627 628
    }

629 630
    if(final_job->trailing_data)
        free(final_job->trailing_data);
631
    mnt_data_count = 0;
632 633 634 635 636 637 638 639 640
    free(logfile_name);
    darshan_finalize(final_job);
    
    if(timing_flag)
    {
        double red_tm, red_slowest;
        double gz_tm, gz_slowest;
        double write_tm, write_slowest;
        double all_tm, all_slowest;
641
        double bcst_tm, bcst_slowest;
642
        
643
        tm_end = DARSHAN_MPI_CALL(PMPI_Wtime)();
644

645
        bcst_tm= red1-bcst;
646 647 648 649 650
        red_tm = red2-red1;
        gz_tm = gz2-gz1;
        write_tm = write2-write1;
        all_tm = tm_end-start_log_time;

651 652 653 654 655 656 657 658 659 660
        DARSHAN_MPI_CALL(PMPI_Reduce)(&red_tm, &red_slowest, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
        DARSHAN_MPI_CALL(PMPI_Reduce)(&gz_tm, &gz_slowest, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
        DARSHAN_MPI_CALL(PMPI_Reduce)(&write_tm, &write_slowest, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
        DARSHAN_MPI_CALL(PMPI_Reduce)(&all_tm, &all_slowest, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
        DARSHAN_MPI_CALL(PMPI_Reduce)(&bcst_tm, &bcst_slowest, 1,
            MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
661 662 663

        if(rank == 0)
        {
664
            DARSHAN_MPI_CALL(PMPI_Comm_size)(MPI_COMM_WORLD, &nprocs);
665 666 667 668 669
            printf("#darshan:<op>\t<nprocs>\t<time>\n");
            printf("darshan:bcst\t%d\t%f\n", nprocs, bcst_slowest);
            printf("darshan:reduce\t%d\t%f\n", nprocs, red_slowest);
            printf("darshan:gzip\t%d\t%f\n", nprocs, gz_slowest);
            printf("darshan:write\t%d\t%f\n", nprocs, write_slowest);
670
            printf("darshan:bcast+reduce+gzip+write\t%d\t%f\n", nprocs, all_slowest);
671 672 673 674 675 676
        }
    }

    return;
}

677 678 679
#ifdef HAVE_MPIIO_CONST
int MPI_File_open(MPI_Comm comm, const char *filename, int amode, MPI_Info info, MPI_File *fh) 
#else
680
int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info, MPI_File *fh) 
681
#endif
682 683 684 685 686 687 688 689
{
    int ret;
    struct darshan_file_runtime* file;
    char* tmp;
    int comm_size;
    double tm1, tm2;

    tm1 = darshan_wtime();
690
    ret = DARSHAN_MPI_CALL(PMPI_File_open)(comm, filename, amode, info, fh);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    tm2 = darshan_wtime();

    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();

        /* use ROMIO approach to strip prefix if present */
        /* strip off prefix if there is one, but only skip prefixes
         * if they are greater than length one to allow for windows
         * drive specifications (e.g. c:\...) 
         */
        tmp = strchr(filename, ':');
        if (tmp > filename + 1) {
            filename = tmp + 1;
        }

707 708
        file = darshan_file_by_name_setfh(filename, (*fh));
        if(file)
709 710
        {
            CP_SET(file, CP_MODE, amode);
711
            CP_F_INC_NO_OVERLAP(file, tm1, tm2, file->last_mpi_meta_end, CP_F_MPI_META_TIME);
712
            if(CP_F_VALUE(file, CP_F_OPEN_TIMESTAMP) == 0)
713 714 715
                CP_F_SET(file, CP_F_OPEN_TIMESTAMP,
                DARSHAN_MPI_CALL(PMPI_Wtime)());
            DARSHAN_MPI_CALL(PMPI_Comm_size)(comm, &comm_size);
716 717 718 719 720 721 722 723 724 725 726 727 728
            if(comm_size == 1)
            {
                CP_INC(file, CP_INDEP_OPENS, 1);
            }
            else
            {
                CP_INC(file, CP_COLL_OPENS, 1);
            }
            if(info != MPI_INFO_NULL)
            {
                CP_INC(file, CP_HINTS, 1);
            }
        }
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743
        CP_UNLOCK();
    }

    return(ret);
}

int MPI_File_close(MPI_File *fh) 
{
    struct darshan_file_runtime* file;
    MPI_File tmp_fh = *fh;
    double tm1, tm2;
    int ret;
    
    tm1 = darshan_wtime();
744
    ret = DARSHAN_MPI_CALL(PMPI_File_close)(fh);
745 746 747 748 749 750
    tm2 = darshan_wtime();

    CP_LOCK();
    file = darshan_file_by_fh(tmp_fh);
    if(file)
    {
751
        CP_F_SET(file, CP_F_CLOSE_TIMESTAMP, DARSHAN_MPI_CALL(PMPI_Wtime)());
752
        CP_F_INC_NO_OVERLAP(file, tm1, tm2, file->last_mpi_meta_end, CP_F_MPI_META_TIME);
753
        darshan_file_close_fh(tmp_fh);
754 755 756 757 758 759 760 761 762 763 764 765 766
    }
    CP_UNLOCK();

    return(ret);
}

int MPI_File_sync(MPI_File fh)
{
    int ret;
    struct darshan_file_runtime* file;
    double tm1, tm2;

    tm1 = darshan_wtime();
767
    ret = DARSHAN_MPI_CALL(PMPI_File_sync)(fh);
768 769 770 771 772 773 774
    tm2 = darshan_wtime();
    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();
        file = darshan_file_by_fh(fh);
        if(file)
        {
775
            CP_F_INC_NO_OVERLAP(file, tm1, tm2, file->last_mpi_write_end, CP_F_MPI_WRITE_TIME);
776 777 778 779 780 781 782 783 784
            CP_INC(file, CP_SYNCS, 1);
        }
        CP_UNLOCK();
    }

    return(ret);
}


785 786 787 788
#ifdef HAVE_MPIIO_CONST
int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, 
    MPI_Datatype filetype, const char *datarep, MPI_Info info)
#else
789 790
int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, 
    MPI_Datatype filetype, char *datarep, MPI_Info info)
791
#endif
792 793 794 795 796 797
{
    int ret;
    struct darshan_file_runtime* file;
    double tm1, tm2;

    tm1 = darshan_wtime();
798 799
    ret = DARSHAN_MPI_CALL(PMPI_File_set_view)(fh, disp, etype,
        filetype, datarep, info);
800 801 802 803 804 805 806 807 808 809
    tm2 = darshan_wtime();
    if(ret == MPI_SUCCESS)
    {
        CP_LOCK();
        file = darshan_file_by_fh(fh);
        if(file)
        {
            CP_INC(file, CP_VIEWS, 1);
            if(info != MPI_INFO_NULL)
            {
810
                CP_F_INC_NO_OVERLAP(file, tm1, tm2, file->last_mpi_meta_end, CP_F_MPI_META_TIME);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
                CP_INC(file, CP_HINTS, 1);
            }
            CP_DATATYPE_INC(file, filetype);
        }
        CP_UNLOCK();
    }

    return(ret);
}

int MPI_File_read(MPI_File fh, void *buf, int count, 
    MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
828
    ret = DARSHAN_MPI_CALL(PMPI_File_read)(fh, buf, count, datatype, status);
829 830 831 832 833 834 835 836 837 838 839 840 841 842
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf,
    int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
843 844
    ret = DARSHAN_MPI_CALL(PMPI_File_read_at)(fh, offset, buf,
        count, datatype, status);
845 846 847 848 849 850 851 852 853 854 855 856 857 858
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
859 860
    ret = DARSHAN_MPI_CALL(PMPI_File_read_at_all)(fh, offset, buf,
        count, datatype, status);
861 862 863 864 865 866 867 868 869 870 871 872 873
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_all(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
874 875
    ret = DARSHAN_MPI_CALL(PMPI_File_read_all)(fh, buf, count,
        datatype, status);
876 877 878 879 880 881 882 883 884 885 886 887 888
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_shared(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
889 890
    ret = DARSHAN_MPI_CALL(PMPI_File_read_shared)(fh, buf, count,
        datatype, status);
891 892 893 894 895 896 897 898 899 900 901 902 903 904
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_INDEP_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_ordered(MPI_File fh, void * buf, int count, 
    MPI_Datatype datatype, MPI_Status * status)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
905 906
    ret = DARSHAN_MPI_CALL(PMPI_File_read_ordered)(fh, buf, count,
        datatype, status);
907 908 909 910 911 912 913 914 915 916 917 918 919 920
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_COLL_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
921 922
    ret = DARSHAN_MPI_CALL(PMPI_File_read_at_all_begin)(fh, offset, buf,
        count, datatype);
923 924 925 926 927 928 929 930 931 932 933 934 935
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_all_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
936
    ret = DARSHAN_MPI_CALL(PMPI_File_read_all_begin)(fh, buf, count, datatype);
937 938 939 940 941 942 943 944 945 946 947 948 949
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_read_ordered_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
950 951
    ret = DARSHAN_MPI_CALL(PMPI_File_read_ordered_begin)(fh, buf, count,
        datatype);
952 953 954 955 956 957 958 959
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_SPLIT_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void * buf,
960
    int count, MPI_Datatype datatype, __D_MPI_REQUEST *request)
961 962 963 964 965
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
966 967
    ret = DARSHAN_MPI_CALL(PMPI_File_iread_at)(fh, offset, buf, count,
        datatype, request);
968 969 970 971 972 973 974
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

975
int MPI_File_iread(MPI_File fh, void * buf, int count, MPI_Datatype datatype, __D_MPI_REQUEST * request)
976 977 978 979 980
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
981
    ret = DARSHAN_MPI_CALL(PMPI_File_iread)(fh, buf, count, datatype, request);
982 983 984 985 986 987 988 989
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

int MPI_File_iread_shared(MPI_File fh, void * buf, int count,
990
    MPI_Datatype datatype, __D_MPI_REQUEST * request)
991 992 993 994 995
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
996 997
    ret = DARSHAN_MPI_CALL(PMPI_File_iread_shared)(fh, buf, count,
        datatype, request);
998 999 1000 1001 1002 1003 1004 1005
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_READ(ret, fh, count, datatype, CP_NB_READS, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}


1006 1007 1008 1009
#ifdef HAVE_MPIIO_CONST
int MPI_File_write(MPI_File fh, const void *buf, int count, 
    MPI_Datatype datatype, MPI_Status *status)
#else
1010 1011
int MPI_File_write(MPI_File fh, void *buf, int count, 
    MPI_Datatype datatype, MPI_Status *status)
1012
#endif
1013 1014 1015 1016 1017
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1018
    ret = DARSHAN_MPI_CALL(PMPI_File_write)(fh, buf, count, datatype, status);
1019 1020 1021 1022 1023 1024 1025
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1026 1027 1028 1029
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,
    int count, MPI_Datatype datatype, MPI_Status *status)
#else
1030 1031
int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf,
    int count, MPI_Datatype datatype, MPI_Status *status)
1032
#endif
1033 1034 1035 1036 1037
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1038 1039
    ret = DARSHAN_MPI_CALL(PMPI_File_write_at)(fh, offset, buf,
        count, datatype, status);
1040 1041 1042 1043 1044 1045 1046
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1047 1048 1049 1050
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void * buf,
    int count, MPI_Datatype datatype, MPI_Status * status)
#else
1051 1052
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype, MPI_Status * status)
1053
#endif
1054 1055 1056 1057 1058
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1059 1060
    ret = DARSHAN_MPI_CALL(PMPI_File_write_at_all)(fh, offset, buf,
        count, datatype, status);
1061 1062 1063 1064 1065 1066 1067
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1068 1069 1070
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_all(MPI_File fh, const void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
#else
1071
int MPI_File_write_all(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
1072
#endif
1073 1074 1075 1076 1077
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1078 1079
    ret = DARSHAN_MPI_CALL(PMPI_File_write_all)(fh, buf, count,
        datatype, status);
1080 1081 1082 1083 1084 1085 1086
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1087 1088 1089
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_shared(MPI_File fh, const void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
#else
1090
int MPI_File_write_shared(MPI_File fh, void * buf, int count, MPI_Datatype datatype, MPI_Status *status)
1091
#endif
1092 1093 1094 1095 1096
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1097 1098
    ret = DARSHAN_MPI_CALL(PMPI_File_write_shared)(fh, buf, count,
        datatype, status);
1099 1100 1101 1102 1103 1104 1105
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_INDEP_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1106 1107 1108 1109
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_ordered(MPI_File fh, const void * buf, int count, 
    MPI_Datatype datatype, MPI_Status * status)
#else
1110 1111
int MPI_File_write_ordered(MPI_File fh, void * buf, int count, 
    MPI_Datatype datatype, MPI_Status * status)
1112
#endif
1113 1114 1115 1116 1117
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1118 1119
    ret = DARSHAN_MPI_CALL(PMPI_File_write_ordered)(fh, buf, count,
         datatype, status);
1120 1121 1122 1123 1124 1125 1126
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_COLL_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1127 1128 1129 1130
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, const void * buf,
    int count, MPI_Datatype datatype)
#else
1131 1132
int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void * buf,
    int count, MPI_Datatype datatype)
1133
#endif
1134 1135 1136 1137 1138
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1139 1140
    ret = DARSHAN_MPI_CALL(PMPI_File_write_at_all_begin)(fh, offset,
        buf, count, datatype);
1141 1142 1143 1144 1145 1146 1147
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1148 1149 1150
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_all_begin(MPI_File fh, const void * buf, int count, MPI_Datatype datatype)
#else
1151
int MPI_File_write_all_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
1152
#endif
1153 1154 1155 1156 1157
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1158
    ret = DARSHAN_MPI_CALL(PMPI_File_write_all_begin)(fh, buf, count, datatype);
1159 1160 1161 1162 1163 1164 1165
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1166 1167 1168
#ifdef HAVE_MPIIO_CONST
int MPI_File_write_ordered_begin(MPI_File fh, const void * buf, int count, MPI_Datatype datatype)
#else
1169
int MPI_File_write_ordered_begin(MPI_File fh, void * buf, int count, MPI_Datatype datatype)
1170
#endif
1171 1172 1173 1174 1175
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1176 1177
    ret = DARSHAN_MPI_CALL(PMPI_File_write_ordered_begin)(fh, buf, count,
        datatype);
1178 1179 1180 1181 1182 1183 1184
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_SPLIT_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1185 1186 1187 1188
#ifdef HAVE_MPIIO_CONST
int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void * buf,
    int count, MPI_Datatype datatype, __D_MPI_REQUEST *request)
#else
1189
int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void * buf,
1190
    int count, MPI_Datatype datatype, __D_MPI_REQUEST *request)
1191
#endif
1192 1193 1194 1195 1196
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1197 1198
    ret = DARSHAN_MPI_CALL(PMPI_File_iwrite_at)(fh, offset, buf,
        count, datatype, request);
1199 1200 1201 1202 1203 1204 1205
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1206 1207 1208
#ifdef HAVE_MPIIO_CONST
int MPI_File_iwrite(MPI_File fh, const void * buf, int count, MPI_Datatype datatype, __D_MPI_REQUEST * request)
#else
1209
int MPI_File_iwrite(MPI_File fh, void * buf, int count, MPI_Datatype datatype, __D_MPI_REQUEST * request)
1210
#endif
1211 1212 1213 1214 1215
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1216
    ret = DARSHAN_MPI_CALL(PMPI_File_iwrite)(fh, buf, count, datatype, request);
1217 1218 1219 1220 1221 1222 1223
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

1224 1225 1226 1227
#ifdef HAVE_MPIIO_CONST
int MPI_File_iwrite_shared(MPI_File fh, const void * buf, int count,
    MPI_Datatype datatype, __D_MPI_REQUEST * request)
#else
1228
int MPI_File_iwrite_shared(MPI_File fh, void * buf, int count,
1229
    MPI_Datatype datatype, __D_MPI_REQUEST * request)
1230
#endif
1231 1232 1233 1234 1235
{
    int ret;
    double tm1, tm2;

    tm1 = darshan_wtime();
1236 1237
    ret = DARSHAN_MPI_CALL(PMPI_File_iwrite_shared)(fh, buf, count,
        datatype, request);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    tm2 = darshan_wtime();
    CP_LOCK();
    CP_RECORD_MPI_WRITE(ret, fh, count, datatype, CP_NB_WRITES, tm1, tm2);
    CP_UNLOCK();
    return(ret);
}

/* cp_log_reduction()
 *
 * Identify shared files and reduce them to one log entry
 *
 * returns 0 on success, -1 on failure
 */
static int cp_log_reduction(struct darshan_job_runtime* final_job, int rank, 
1252
    char* logfile_name, MPI_Offset* next_offset)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
    /* TODO: these need to be allocated differently now, too big */
    uint64_t hash_array[CP_MAX_FILES] = {0};
    int mask_array[CP_MAX_FILES] = {0};
    int all_mask_array[CP_MAX_FILES] = {0};
    int ret;
    int i;
    int j;
    MPI_Op reduce_op;
    MPI_Datatype rtype;
    struct darshan_file* tmp_array = NULL;
    int shared_count = 0;
Philip Carns's avatar
Philip Carns committed
1265
    double mpi_time, posix_time;
1266 1267

    /* register a reduction operation */
1268
    ret = DARSHAN_MPI_CALL(PMPI_Op_create)(darshan_file_reduce, 1, &reduce_op); 
1269 1270 1271 1272 1273 1274 1275 1276
    if(ret != 0)
    {
        return(-1);
    }

    /* construct a datatype for a file record.  This is serving no purpose
     * except to make sure we can do a reduction on proper boundaries
     */
1277 1278 1279
    DARSHAN_MPI_CALL(PMPI_Type_contiguous)(sizeof(struct darshan_file),
        MPI_BYTE, &rtype); 
    DARSHAN_MPI_CALL(PMPI_Type_commit)(&rtype); 
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

    /* gather list of files that root process has opened */
    if(rank == 0)
    {
        for(i=0; i<final_job->file_count; i++)
        {
            hash_array[i] = final_job->file_array[i].hash;
        }
    }

    /* broadcast list of files to all other processes */
1291 1292
    ret = DARSHAN_MPI_CALL(PMPI_Bcast)(hash_array,
        (CP_MAX_FILES * sizeof(uint64_t)), 
1293 1294 1295
        MPI_BYTE, 0, MPI_COMM_WORLD);
    if(ret != 0)
    {
1296
        DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1297
        DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
        return(-1);
    }

    /* everyone looks to see if they have also opened that same file */
    for(i=0; (i<CP_MAX_FILES && hash_array[i] != 0); i++)
    {
        for(j=0; j<final_job->file_count; j++)
        {
            if(hash_array[i] && final_job->file_array[j].hash == hash_array[i])
            {
                /* we opened that file too */
                mask_array[i] = 1;
                break;
            }
        }
    }

    /* now allreduce so that everyone agrees on which files are shared */
1316 1317
    ret = DARSHAN_MPI_CALL(PMPI_Allreduce)(mask_array, all_mask_array,
        CP_MAX_FILES, MPI_INT, MPI_LAND, MPI_COMM_WORLD);
1318 1319
    if(ret != 0)
    {
1320
        DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1321
        DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        return(-1);
    }

    /* walk through mask array counting entries and marking corresponding
     * files with a rank of -1
     */
    for(i=0; i<CP_MAX_FILES; i++)
    {
        if(all_mask_array[i])
        {
            shared_count++;
            for(j=0; j<final_job->file_count; j++)
            {
                if(final_job->file_array[j].hash == hash_array[i])
                {
Philip Carns's avatar
Philip Carns committed
1337 1338 1339 1340 1341 1342 1343 1344
                    posix_time = 
                      final_job->file_array[j].fcounters[CP_F_POSIX_META_TIME] +
                      final_job->file_array[j].fcounters[CP_F_POSIX_READ_TIME] +
                      final_job->file_array[j].fcounters[CP_F_POSIX_WRITE_TIME];
                    mpi_time = 
                      final_job->file_array[j].fcounters[CP_F_MPI_META_TIME] +
                      final_job->file_array[j].fcounters[CP_F_MPI_READ_TIME] +
                      final_job->file_array[j].fcounters[CP_F_MPI_WRITE_TIME];
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

                    /*
                     * Initialize fastest/slowest info prior
                     * to the reduction.
                     */
                    final_job->file_array[j].counters[CP_FASTEST_RANK] =
                      final_job->file_array[j].rank;
                    final_job->file_array[j].counters[CP_FASTEST_RANK_BYTES] =
                      final_job->file_array[j].counters[CP_BYTES_READ] +
                      final_job->file_array[j].counters[CP_BYTES_WRITTEN];
Philip Carns's avatar
Philip Carns committed
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
                    /* use MPI timing if this file was accessed with MPI */
                    if(mpi_time > 0)
                    {
                        final_job->file_array[j].fcounters[CP_F_FASTEST_RANK_TIME] =
                        mpi_time;
                    }
                    else
                    {
                        final_job->file_array[j].fcounters[CP_F_FASTEST_RANK_TIME] =
                        posix_time;
                    }
1366

Philip Carns's avatar
Philip Carns committed
1367 1368 1369 1370 1371
                    /* Until reduction occurs, we assume that this rank is
                     * both the fastest and slowest.  It is up to the
                     * reduction operator to find the true min and max if it
                     * is a shared file.
                     */
1372
                    final_job->file_array[j].counters[CP_SLOWEST_RANK] =
Philip Carns's avatar
Philip Carns committed
1373
                        final_job->file_array[j].counters[CP_FASTEST_RANK];
1374
                    final_job->file_array[j].counters[CP_SLOWEST_RANK_BYTES] =
Philip Carns's avatar
Philip Carns committed
1375
                        final_job->file_array[j].counters[CP_FASTEST_RANK_BYTES];
1376
                    final_job->file_array[j].fcounters[CP_F_SLOWEST_RANK_TIME] =
Philip Carns's avatar
Philip Carns committed
1377
                        final_job->file_array[j].fcounters[CP_F_FASTEST_RANK_TIME];
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
                    final_job->file_array[j].rank = -1;
                    break;
                }
            }
        }
    }

    if(shared_count)
    {
        if(rank == 0)
        {
            /* root proc needs to allocate memory to store reduction */
            tmp_array = malloc(shared_count*sizeof(struct darshan_file));
            if(!tmp_array)
            {
                /* TODO: think more about how to handle errors like this */
1395
                DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1396
                DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
                return(-1);
            }
        }

        /* sort the array of files descending by rank so that we get all of the 
         * shared files (marked by rank -1) in a contiguous portion at end 
         * of the array
         */
        qsort(final_job->file_array, final_job->file_count, 
            sizeof(struct darshan_file), file_compare);

1408
        ret = DARSHAN_MPI_CALL(PMPI_Reduce)(
1409 1410 1411 1412
            &final_job->file_array[final_job->file_count-shared_count], 
            tmp_array, shared_count, rtype, reduce_op, 0, MPI_COMM_WORLD);
        if(ret != 0)
        {
1413
            DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1414
            DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1415 1416 1417
            return(-1);
        }

1418 1419 1420 1421 1422
        ret = darshan_file_variance(
            &final_job->file_array[final_job->file_count-shared_count],
            tmp_array, shared_count, rank);
        if (ret)
        {
1423
            DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1424
            DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1425 1426 1427
            return(-1);
        }

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        if(rank == 0)
        {
            /* root replaces local files with shared ones */
            memcpy(&final_job->file_array[final_job->file_count-shared_count],
                tmp_array, shared_count*sizeof(struct darshan_file));
            free(tmp_array);
            tmp_array = NULL;
        }
        else
        {
            /* everyone else simply discards those file records */
            final_job->file_count -= shared_count;
        }
    }
    
1443
    DARSHAN_MPI_CALL(PMPI_Op_free)(&reduce_op);
1444
    DARSHAN_MPI_CALL(PMPI_Type_free)(&rtype);
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    return(0);
}

/* TODO: should we use more of the CP macros here? */
static void darshan_file_reduce(void* infile_v, 
    void* inoutfile_v, int *len, 
    MPI_Datatype *datatype)
{
    struct darshan_file tmp_file;
    struct darshan_file* infile = infile_v;
    struct darshan_file* inoutfile = inoutfile_v;
    struct darshan_file_runtime tmp_runtime;
    int i;
    int j;
    int k;

    for(i=0; i<*len; i++)
    {
        memset(&tmp_file, 0, sizeof(tmp_file));

        tmp_file.hash = infile->hash;
        tmp_file.rank = -1; /* indicates shared across all procs */

        /* sum */
        for(j=CP_INDEP_OPENS; j<=CP_VIEWS; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

1476 1477 1478 1479 1480
        /* pick one, favoring complete records if available */
        if(CP_FILE_PARTIAL(infile))
            tmp_file.counters[CP_MODE] = inoutfile->counters[CP_MODE];
        else
            tmp_file.counters[CP_MODE] = infile->counters[CP_MODE];
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505


        /* sum */
        for(j=CP_BYTES_READ; j<=CP_BYTES_WRITTEN; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* max */
        for(j=CP_MAX_BYTE_READ; j<=CP_MAX_BYTE_WRITTEN; j++)
        {
            tmp_file.counters[j] = (
                (infile->counters[j] > inoutfile->counters[j]) ? 
                infile->counters[j] :
                inoutfile->counters[j]);
        }

        /* sum */
        for(j=CP_CONSEC_READS; j<=CP_MEM_NOT_ALIGNED; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

1506 1507 1508 1509 1510 1511
        /* pick one, favoring complete records if available */
        if(CP_FILE_PARTIAL(infile))
            tmp_file.counters[CP_MEM_ALIGNMENT] = inoutfile->counters[CP_MEM_ALIGNMENT];
        else
            tmp_file.counters[CP_MEM_ALIGNMENT] = infile->counters[CP_MEM_ALIGNMENT];

1512 1513 1514 1515 1516 1517 1518
        /* sum */
        for(j=CP_FILE_NOT_ALIGNED; j<=CP_FILE_NOT_ALIGNED; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

1519 1520 1521 1522 1523
        /* pick one, favoring complete records if available */
        if(CP_FILE_PARTIAL(infile))
            tmp_file.counters[CP_FILE_ALIGNMENT] = inoutfile->counters[CP_FILE_ALIGNMENT];
        else
            tmp_file.counters[CP_FILE_ALIGNMENT] = infile->counters[CP_FILE_ALIGNMENT];
1524
        
1525 1526
        /* skip CP_MAX_*_TIME_SIZE; handled in floating point section */

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        /* sum */
        for(j=CP_SIZE_READ_0_100; j<=CP_EXTENT_WRITE_1G_PLUS; j++)
        {
            tmp_file.counters[j] = infile->counters[j] + 
                inoutfile->counters[j];
        }

        /* pick the 4 most common strides out of the 8 we have to chose from */

        /* first collapse any duplicates */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            for(k=CP_STRIDE1_STRIDE; k<=CP_STRIDE4_STRIDE; k++)
            {
                if(infile->counters[j] == inoutfile->counters[k])
                {
                    infile->counters[j+4] += inoutfile->counters[k+4];
                    inoutfile->counters[k] = 0;
                    inoutfile->counters[k+4] = 0;
                }
            }
        }

        /* placeholder so we can re-use macros */
        tmp_runtime.log_file = &tmp_file;
        /* first set */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, infile->counters[j],
                infile->counters[j+4], 1, CP_STRIDE1_STRIDE, CP_STRIDE1_COUNT);
        }
        /* second set */
        for(j=CP_STRIDE1_STRIDE; j<=CP_STRIDE4_STRIDE; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, inoutfile->counters[j],
                inoutfile->counters[j+4], 1, CP_STRIDE1_STRIDE, CP_STRIDE1_COUNT);
        }

        /* TODO: subroutine so we don't duplicate so much */
        /* same for access counts */

        /* first collapse any duplicates */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            for(k=CP_ACCESS1_ACCESS; k<=CP_ACCESS4_ACCESS; k++)
            {
                if(infile->counters[j] == inoutfile->counters[k])
                {
                    infile->counters[j+4] += inoutfile->counters[k+4];
                    inoutfile->counters[k] = 0;
                    inoutfile->counters[k+4] = 0;
                }
            }
        }

        /* placeholder so we can re-use macros */
        tmp_runtime.log_file = &tmp_file;
        /* first set */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, infile->counters[j],
                infile->counters[j+4], 1, CP_ACCESS1_ACCESS, CP_ACCESS1_COUNT);
        }
        /* second set */
        for(j=CP_ACCESS1_ACCESS; j<=CP_ACCESS4_ACCESS; j++)
        {
            CP_COUNTER_INC(&tmp_runtime, inoutfile->counters[j],
                inoutfile->counters[j+4], 1, CP_ACCESS1_ACCESS, CP_ACCESS1_COUNT);
        }

1597
        /* min non-zero (if available) value */
1598 1599
        for(j=CP_F_OPEN_TIMESTAMP; j<=CP_F_WRITE_START_TIMESTAMP; j++)
        {
1600
            if(infile->fcounters[j] > inoutfile->fcounters[j] && inoutfile->fcounters[j] > 0)
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
                tmp_file.fcounters[j] = inoutfile->fcounters[j];
            else
                tmp_file.fcounters[j] = infile->fcounters[j];
        }

        /* max */
        for(j=CP_F_CLOSE_TIMESTAMP; j<=CP_F_WRITE_END_TIMESTAMP; j++)
        {
            if(infile->fcounters[j] > inoutfile->fcounters[j])
                tmp_file.fcounters[j] = infile->fcounters[j];
            else
                tmp_file.fcounters[j] = inoutfile->fcounters[j];
        }

        /* sum */
        for(j=CP_F_POSIX_READ_TIME; j<=CP_F_MPI_WRITE_TIME; j++)
        {
            tmp_file.fcounters[j] = infile->fcounters[j] + 
                inoutfile->fcounters[j];
        }

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        /* max (special case) */
        if(infile->fcounters[CP_F_MAX_WRITE_TIME] > 
            inoutfile->fcounters[CP_F_MAX_WRITE_TIME])
        {
            tmp_file.fcounters[CP_F_MAX_WRITE_TIME] = 
                infile->fcounters[CP_F_MAX_WRITE_TIME];
            tmp_file.counters[CP_MAX_WRITE_TIME_SIZE] = 
                infile->counters[CP_MAX_WRITE_TIME_SIZE];
        }
        else
        {
            tmp_file.fcounters[CP_F_MAX_WRITE_TIME] = 
                inoutfile->fcounters[CP_F_MAX_WRITE_TIME];
            tmp_file.counters[CP_MAX_WRITE_TIME_SIZE] = 
                inoutfile->counters[CP_MAX_WRITE_TIME_SIZE];
        }

        if(infile->fcounters[CP_F_MAX_READ_TIME] > 
            inoutfile->fcounters[CP_F_MAX_READ_TIME])
        {
            tmp_file.fcounters[CP_F_MAX_READ_TIME] = 
                infile->fcounters[CP_F_MAX_READ_TIME];
            tmp_file.counters[CP_MAX_READ_TIME_SIZE] = 
                infile->counters[CP_MAX_READ_TIME_SIZE];
        }
        else
        {
            tmp_file.fcounters[CP_F_MAX_READ_TIME] = 
                inoutfile->fcounters[CP_F_MAX_READ_TIME];
            tmp_file.counters[CP_MAX_READ_TIME_SIZE] = 
                inoutfile->counters[CP_MAX_READ_TIME_SIZE];
        }

1655
        /* min (zeroes are ok here; some procs don't do I/O) */
1656 1657
        if(infile->fcounters[CP_F_FASTEST_RANK_TIME] <
           inoutfile->fcounters[CP_F_FASTEST_RANK_TIME])
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        {
            tmp_file.counters[CP_FASTEST_RANK] =
                infile->counters[CP_FASTEST_RANK];
            tmp_file.counters[CP_FASTEST_RANK_BYTES] = 
                infile->counters[CP_FASTEST_RANK_BYTES];
            tmp_file.fcounters[CP_F_FASTEST_RANK_TIME] =
                infile->fcounters[CP_F_FASTEST_RANK_TIME];
        }
        else
        {
            tmp_file.counters[CP_FASTEST_RANK] =
                inoutfile->counters[CP_FASTEST_RANK];
            tmp_file.counters[CP_FASTEST_RANK_BYTES] =
                inoutfile->counters[CP_FASTEST_RANK_BYTES];
            tmp_file.fcounters[CP_F_FASTEST_RANK_TIME] = 
                inoutfile->fcounters[CP_F_FASTEST_RANK_TIME];
        }

        /* max */
        if(infile->fcounters[CP_F_SLOWEST_RANK_TIME] >
           inoutfile->fcounters[CP_F_SLOWEST_RANK_TIME])
        {
            tmp_file.counters[CP_SLOWEST_RANK] =
                infile->counters[CP_SLOWEST_RANK];
            tmp_file.counters[CP_SLOWEST_RANK_BYTES] =
                infile->counters[CP_SLOWEST_RANK_BYTES];
            tmp_file.fcounters[CP_F_SLOWEST_RANK_TIME] = 
                infile->fcounters[CP_F_SLOWEST_RANK_TIME];
        }
        else
        {
            tmp_file.counters[CP_SLOWEST_RANK] = 
                inoutfile->counters[CP_SLOWEST_RANK];
            tmp_file.counters[CP_SLOWEST_RANK_BYTES] = 
                inoutfile->counters[CP_SLOWEST_RANK_BYTES];
            tmp_file.fcounters[CP_F_SLOWEST_RANK_TIME] = 
                inoutfile->fcounters[CP_F_SLOWEST_RANK_TIME];
        }

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        /* pick one device id and file size, favoring complete records if
         * available
         */
        if(CP_FILE_PARTIAL(infile))
        {
            tmp_file.counters[CP_DEVICE] = inoutfile->counters[CP_DEVICE];
            tmp_file.counters[CP_SIZE_AT_OPEN] = inoutfile->counters[CP_SIZE_AT_OPEN];
        }
        else
        {
            tmp_file.counters[CP_DEVICE] = infile->counters[CP_DEVICE];
            tmp_file.counters[CP_SIZE_AT_OPEN] = infile->counters[CP_SIZE_AT_OPEN];
        }
1710

1711 1712 1713
        /* pick one name suffix (every file record should have this, whether
         * it is a partial record or not
         */
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        strcpy(tmp_file.name_suffix, infile->name_suffix);

        *inoutfile = tmp_file;
        inoutfile++;
        infile++;
    }
    
    return;
}
/* cp_log_construct_indices()
 *
 * create memory datatypes to describe the log data to write out
 */
static void cp_log_construct_indices(struct darshan_job_runtime* final_job, 
1728 1729
    int rank, int* inout_count, int* lengths, void** pointers, char*
    trailing_data)
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
{
    *inout_count = 0;

    if(rank == 0)
    {
        /* root process is responsible for writing header */
        lengths[*inout_count] = sizeof(final_job->log_job);
        pointers[*inout_count] = &final_job->log_job;
        (*inout_count)++;

        /* also string containing exe command line */
        lengths[*inout_count] = CP_EXE_LEN + 1; 
1742
        pointers[*inout_count] = trailing_data;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        (*inout_count)++;
    }

    /* everyone adds their own file records, if present */
    if(final_job->file_count > 0)
    {
        lengths[*inout_count] = final_job->file_count*CP_FILE_RECORD_SIZE;
        pointers[*inout_count] = final_job->file_array;
        (*inout_count)++;
    }
    
    return;
}

/* cp_log_write()
 *
 * actually write log information to disk
 */
static int cp_log_write(struct darshan_job_runtime* final_job, int rank, 
1762
    char* logfile_name, int count, int* lengths, void** pointers, double start_log_time)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
{
    int ret;
    MPI_File fh;
    MPI_Status status;
    MPI_Datatype mtype;
    int my_total = 0;
    long my_total_long;
    long offset;
    int i;
    MPI_Aint displacements[CP_MAX_MEM_SEGMENTS];
    void* buf;
    int failed_write = 0;
1775
    char* hints;
1776 1777 1778
    char* key;
    char* value;
    char* tok_str;
Philip Carns's avatar
Philip Carns committed
1779
    char* orig_tok_str;
1780 1781
    char* saveptr = NULL;
    MPI_Info info;
1782

1783 1784
    /* skip building a datatype if we don't have anything to write */
    if(count > 0)
1785
    {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        /* construct data type to describe everything we are writing */
        /* NOTE: there may be a bug in MPI-IO when using MPI_BOTTOM with an
         * hindexed data type.  We will instead use the first pointer as a base
         * and adjust the displacements relative to it.
         */
        buf = pointers[0];
        for(i=0; i<count; i++)
        {