Commit 7e18ce28 authored by Sudheer Chunduri's avatar Sudheer Chunduri
Browse files

autoperf few fixes and code cleanup

parent dcc18274
......@@ -421,6 +421,7 @@ def counter_names(mod_name, fcnts=False, special=''):
i += 1
return names
......@@ -696,6 +696,56 @@ class DarshanReport(object):
def mod_read_all_apxc_records(self, mod, dtype=None, warnings=True):
Reads all APXC records for provided module.
mod (str): Identifier of module to fetch all records
dtype (str): 'numpy' for ndarray (default), 'dict' for python dictionary
if mod not in['modules']:
if warnings:
logger.warning(f"Skipping. Log does not contain data for mod: {mod}")
supported = ['APXC']
if mod not in supported:
if warnings:
logger.warning(f" Skipping. Unsupported module: {mod} in in mod_read_all_apxc_records(). Supported: {supported}")
# skip mod
# handling options
dtype = dtype if dtype else self.dtype
self.records[mod] = DarshanRecordCollection(mod=mod, report=self)
cn = backend.counter_names(mod)
# update module metadata
self._modules[mod]['num_records'] = 0
if mod not in self.counters:
self.counters[mod] = {}
# fetch records
# fetch header record
rec = backend.log_get_apxc_record(self.log, mod, "HEADER", dtype=dtype)
while rec != None:
self.records[mod].append(rec)['modules'][mod]['num_records'] += 1
# fetch next
rec = backend.log_get_apxc_record(self.log, mod, "PERF", dtype=dtype)
if self.lookup_name_records:
def mod_read_all_dxt_records(self, mod, dtype=None, warnings=True, reads=True, writes=True):
Reads all dxt records for provided module.
#!/usr/bin/env python
# coding: utf-8
# # DarshanUtils for Python for processing APMPI records
# This notebook gives an overwiew of features provided by the Python bindings for DarshanUtils.
# By default all AMMPI module records, metadata, and the name records are loaded when opening a Darshan log:
import argparse
import darshan
import cffi
import numpy
import pandas
import matplotlib
#import pprint
import pandas as pd
import logging
from darshan.backend.cffi_backend import ffi
logger = logging.getLogger(__name__)
from import DarshanReport
import darshan.backend.cffi_backend as backend
import darshan
import pandas as pd
import time
from rich import print as rprint
from rich import pretty
from rich.panel import Panel
from rich import inspect
from rich.color import Color
from rich.console import Console
console = Console()
from matplotlib.backends.backend_pdf import FigureCanvasPdf, PdfPages
from matplotlib.figure import Figure
#pp = pprint.PrettyPrinter()
#color = Color.parse("blue")
#inspect(color, methods=True)
def main():
parser = argparse.ArgumentParser()
help="Surpress zero count calls",
"logname", metavar="logname", type=str, nargs=1, help="Logname to parse"
args = parser.parse_args()
report = darshan.DarshanReport(args.logname[0], read_all=False)
if "APMPI" not in report.modules:
print("This log does not contain AutoPerf MPI data")
r = report.mod_read_all_apmpi_records("APMPI")
pdf = matplotlib.backends.backend_pdf.PdfPages("apmpi_output.pdf")
header_rec = report.records["APMPI"][0]
print("# darshan log version: ", header_rec["version"])
sync_flag = header_rec["sync_flag"]
"APMPI Variance in total mpi time: ", header_rec["variance_total_mpitime"], "\n"
if sync_flag:
"APMPI Variance in total mpi sync time: ",
df_apmpi = pd.DataFrame()
list_mpiop = []
list_rank = []
for rec in report.records["APMPI"][
]: # skip the first record which is header record
mpi_nonzero_callcount = []
for k, v in rec["all_counters"].items():
if k.endswith("_CALL_COUNT") and v > 0:
mpi_nonzero_callcount.append(k[: -(len("CALL_COUNT"))])
df_rank = pd.DataFrame()
for mpiop in mpi_nonzero_callcount:
ncall = mpiop
ncount = mpiop + "CALL_COUNT"
nsize = mpiop + "TOTAL_BYTES"
h0 = mpiop + "MSG_SIZE_AGG_0_256"
h1 = mpiop + "MSG_SIZE_AGG_256_1K"
h2 = mpiop + "MSG_SIZE_AGG_1K_8K"
h3 = mpiop + "MSG_SIZE_AGG_8K_256K"
h4 = mpiop + "MSG_SIZE_AGG_256K_1M"
h5 = mpiop + "MSG_SIZE_AGG_1M_PLUS"
ntime = mpiop + "TOTAL_TIME"
mintime = mpiop + "MIN_TIME"
maxtime = mpiop + "MAX_TIME"
if sync_flag:
totalsync = mpiop + "TOTAL_SYNC_TIME"
mpiopstat = {}
mpiopstat["Rank"] = rec["rank"]
mpiopstat["Node_ID"] = rec["node_name"]
mpiopstat["Call"] = ncall[:-1]
mpiopstat["Total_Time"] = rec["all_counters"][ntime]
mpiopstat["Count"] = rec["all_counters"][ncount]
mpiopstat["Total_Bytes"] = rec["all_counters"].get(nsize, None)
mpiopstat["[0-256B]"] = rec["all_counters"].get(h0, None)
mpiopstat["[256-1KB]"] = rec["all_counters"].get(h1, None)
mpiopstat["[1K-8KB]"] = rec["all_counters"].get(h2, None)
mpiopstat["[8K-256KB]"] = rec["all_counters"].get(h3, None)
mpiopstat["256K-1MB"] = rec["all_counters"].get(h4, None)
mpiopstat["[>1MB]"] = rec["all_counters"].get(h5, None)
mpiopstat["Min_Time"] = rec["all_counters"][mintime]
mpiopstat["Max_Time"] = rec["all_counters"][maxtime]
if sync_flag:
mpiopstat["Total_SYNC_Time"] = rec["all_counters"][totalsync]
rankstat = {}
rankstat["Rank"] = rec["rank"]
rankstat["Node_ID"] = rec["node_name"]
rankstat["Call"] = "Total_MPI_time"
rankstat["Total_Time"] = rec["all_counters"]["RANK_TOTAL_MPITIME"]
df_rank = pd.DataFrame(list_rank)
avg_total_time = df_rank["Total_Time"].mean()
max_total_time = df_rank["Total_Time"].max()
min_total_time = df_rank["Total_Time"].min()
max_rank = df_rank.loc[df_rank["Total_Time"].idxmax()]["Rank"]
min_rank = df_rank.loc[df_rank["Total_Time"].idxmin()]["Rank"]
# assumption: row index and rank id are same in df_rank
# .. need to check if that is an incorrect assumption
mean_rank = (
(df_rank["Total_Time"] - df_rank["Total_Time"].mean()).abs().argsort()[:1][0]
list_combined = list_mpiop + list_rank
df_apmpi = pd.DataFrame(list_combined)
df_apmpi = df_apmpi.sort_values(by=["Rank", "Total_Time"], ascending=[True, False])
print("[bold green] MPI stats for rank with maximum MPI time")#, border_style="blue")
print("[bold green] MPI stats for rank with maximum MPI time\n", df_apmpi.loc[df_apmpi["Rank"] == max_rank])
print("[bold green] MPI stats for rank with minimum MPI time")# border_style="blue")
print(df_apmpi.loc[df_apmpi["Rank"] == min_rank])
print("[bold green] MPI stats for rank with mean MPI time")#, border_style="blue")
print(df_apmpi.loc[df_apmpi["Rank"] == mean_rank])
# print(df_apmpi)
df_apmpi.to_csv('apmpi.csv', index=False)
fig = Figure()
ax = fig.gca()
ax.plot(df_rank["Rank"], df_rank["Total_Time"])
ax.set_ylabel("MPI Total time(s)")
canvas = FigureCanvasPdf(fig)
fig = Figure()
ax = fig.gca()
#fig2.plot(df_apmpi.loc[df_apmpi["Rank"] == max_rank])
ax.plot(df_apmpi.loc[df_apmpi["Rank"] == max_rank]["Call"], df_apmpi.loc[df_apmpi["Rank"] == max_rank]["Total_Time"])
ax.set_xlabel("MPI OP")
ax.set_ylabel("Total time(s)")
canvas = FigureCanvasPdf(fig)
fig = Figure()
ax = fig.gca()
ax.plot(df_apmpi.loc[df_apmpi["Rank"] == min_rank]["Call"], df_apmpi.loc[df_apmpi["Rank"] == min_rank]["Total_Time"])
ax.set_xlabel("MPI OP")
ax.set_ylabel("Total time(s)")
ax.set_title("Min rank MPI times")
canvas = FigureCanvasPdf(fig)
#fig3.plot(df_apmpi.loc[df_apmpi["Rank"] == min_rank])
if __name__ == "__main__":
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment