Commit 17db029e authored by Jakob Luettgau's avatar Jakob Luettgau
Browse files

Isolate stdio-segfault/could not inflate issue. Update examples and notebook.

parent 615f7363
......@@ -48,7 +48,7 @@ docs: ## generate Sphinx HTML documentation, including API docs
$(MAKE) -C docs clean
$(MAKE) -C docs html
open-docs: docs
docs-show: docs
xdg-open docs/_build/html/index.html
servedocs: docs ## compile the docs watching for changes
......
......@@ -28,7 +28,6 @@ print(r)
print('-'*80)
# fails, symbol not found => fixed with pull request
print('log_get_modules:')
darshan.log_get_modules(log)
print(r)
......@@ -60,6 +59,19 @@ print(r)
print('-'*80)
print('log_get_mpiio_record:')
r = darshan.log_get_mpiio_record(log)
print(r)
print('-'*80)
print('log_get_stdio_record:')
r = darshan.log_get_stdio_record(log)
print(r)
print('-'*80)
print('dict(zip(names, values):')
d = dict(zip(darshan.counter_names('posix'), darshan.log_get_posix_record(log)['counters']))
print(d)
......
%% Cell type:markdown id: tags:
## Darshan Utils for Python
This notebook inlcudes a few examples how to use the darshan-utils bindings for python.
%% Cell type:code id: tags:
``` python
import darshan
log = darshan.log_open("example.darshan")
```
%% Cell type:code id: tags:
``` python
darshan.log_get_job(log)
```
%%%% Output: execute_result
{'jobid': 4478544,
'uid': 69615,
'start_time': 1490000867,
'end_time': 1490000983,
'metadata': {'lib_ver': '3.1.3', 'h': 'romio_no_indep_rw=true;cb_nodes=4'}}
%% Cell type:code id: tags:
``` python
darshan.log_get_exe(log)
```
%%%% Output: execute_result
'/global/project/projectdirs/m888/glock/tokio-abc-results/bin.edison/vpicio_uni /scratch2/scratchdirs/glock/tokioabc-s.4478544/vpicio/vpicio.hdf5 32'
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
darshan.log_get_mounts(log)
```
%%%% Output: execute_result
[('/.shared/base/default/etc/dat.conf', 'dvs'),
('/usr/lib64/libibverbs.so.1.0.0', 'dvs'),
('/usr/lib64/libibumad.so.3.0.2', 'dvs'),
('/usr/lib64/librdmacm.so.1.0.0', 'dvs'),
('/usr/lib64/libibgni.so.1.0.0', 'dvs'),
('/global/cscratch1', 'lustre'),
('/global/projectb', 'dvs'),
('/global/projecta', 'dvs'),
('/usr/sbin/ibstat', 'dvs'),
('/global/project', 'dvs'),
('/global/common', 'dvs'),
('/global/syscom', 'dvs'),
('/global/dna', 'dvs'),
('/opt/slurm', 'dvs'),
('/global/u1', 'dvs'),
('/global/u2', 'dvs'),
('/scratch1', 'lustre'),
('/scratch2', 'lustre'),
('/scratch3', 'lustre'),
('/etc', 'dvs'),
('/', 'rootfs'),
('/', 'dvs')]
%% Cell type:code id: tags:
``` python
darshan.log_get_modules(log)
```
%%%% Output: execute_result
{'POSIX': {'len': 186, 'ver': 3, 'idx': 1},
'MPI-IO': {'len': 154, 'ver': 2, 'idx': 2},
'LUSTRE': {'len': 87, 'ver': 1, 'idx': 6},
'STDIO': {'len': 3234, 'ver': 1, 'idx': 7}}
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
### Exploring Available Counters
Each Darshan module comes with it's own counters which can be easily listed using the `counter_names()` and `counterf_names()` functions.
%% Cell type:code id: tags:
``` python
darshan.counter_names("posix")
# also note f counters: darshan.fcounter_names("posix")
```
%%%% Output: execute_result
['POSIX_OPENS',
'POSIX_FILENOS',
'POSIX_DUPS',
'POSIX_READS',
'POSIX_WRITES',
'POSIX_SEEKS',
'POSIX_STATS',
'POSIX_MMAPS',
'POSIX_FSYNCS',
'POSIX_FDSYNCS',
'POSIX_RENAME_SOURCES',
'POSIX_RENAME_TARGETS',
'POSIX_RENAMED_FROM',
'POSIX_MODE',
'POSIX_BYTES_READ',
'POSIX_BYTES_WRITTEN',
'POSIX_MAX_BYTE_READ',
'POSIX_MAX_BYTE_WRITTEN',
'POSIX_CONSEC_READS',
'POSIX_CONSEC_WRITES',
'POSIX_SEQ_READS',
'POSIX_SEQ_WRITES',
'POSIX_RW_SWITCHES',
'POSIX_MEM_NOT_ALIGNED',
'POSIX_MEM_ALIGNMENT',
'POSIX_FILE_NOT_ALIGNED',
'POSIX_FILE_ALIGNMENT',
'POSIX_MAX_READ_TIME_SIZE',
'POSIX_MAX_WRITE_TIME_SIZE',
'POSIX_SIZE_READ_0_100',
'POSIX_SIZE_READ_100_1K',
'POSIX_SIZE_READ_1K_10K',
'POSIX_SIZE_READ_10K_100K',
'POSIX_SIZE_READ_100K_1M',
'POSIX_SIZE_READ_1M_4M',
'POSIX_SIZE_READ_4M_10M',
'POSIX_SIZE_READ_10M_100M',
'POSIX_SIZE_READ_100M_1G',
'POSIX_SIZE_READ_1G_PLUS',
'POSIX_SIZE_WRITE_0_100',
'POSIX_SIZE_WRITE_100_1K',
'POSIX_SIZE_WRITE_1K_10K',
'POSIX_SIZE_WRITE_10K_100K',
'POSIX_SIZE_WRITE_100K_1M',
'POSIX_SIZE_WRITE_1M_4M',
'POSIX_SIZE_WRITE_4M_10M',
'POSIX_SIZE_WRITE_10M_100M',
'POSIX_SIZE_WRITE_100M_1G',
'POSIX_SIZE_WRITE_1G_PLUS',
'POSIX_STRIDE1_STRIDE',
'POSIX_STRIDE2_STRIDE',
'POSIX_STRIDE3_STRIDE',
'POSIX_STRIDE4_STRIDE',
'POSIX_STRIDE1_COUNT',
'POSIX_STRIDE2_COUNT',
'POSIX_STRIDE3_COUNT',
'POSIX_STRIDE4_COUNT',
'POSIX_ACCESS1_ACCESS',
'POSIX_ACCESS2_ACCESS',
'POSIX_ACCESS3_ACCESS',
'POSIX_ACCESS4_ACCESS',
'POSIX_ACCESS1_COUNT',
'POSIX_ACCESS2_COUNT',
'POSIX_ACCESS3_COUNT',
'POSIX_ACCESS4_COUNT',
'POSIX_FASTEST_RANK',
'POSIX_FASTEST_RANK_BYTES',
'POSIX_SLOWEST_RANK',
'POSIX_SLOWEST_RANK_BYTES']
%% Cell type:code id: tags:
``` python
darshan.counter_names("mpiio")
# also note f counters: darshan.fcounter_names("mpiio")
```
%%%% Output: execute_result
['MPIIO_INDEP_OPENS',
'MPIIO_COLL_OPENS',
'MPIIO_INDEP_READS',
'MPIIO_INDEP_WRITES',
'MPIIO_COLL_READS',
'MPIIO_COLL_WRITES',
'MPIIO_SPLIT_READS',
'MPIIO_SPLIT_WRITES',
'MPIIO_NB_READS',
'MPIIO_NB_WRITES',
'MPIIO_SYNCS',
'MPIIO_HINTS',
'MPIIO_VIEWS',
'MPIIO_MODE',
'MPIIO_BYTES_READ',
'MPIIO_BYTES_WRITTEN',
'MPIIO_RW_SWITCHES',
'MPIIO_MAX_READ_TIME_SIZE',
'MPIIO_MAX_WRITE_TIME_SIZE',
'MPIIO_SIZE_READ_AGG_0_100',
'MPIIO_SIZE_READ_AGG_100_1K',
'MPIIO_SIZE_READ_AGG_1K_10K',
'MPIIO_SIZE_READ_AGG_10K_100K',
'MPIIO_SIZE_READ_AGG_100K_1M',
'MPIIO_SIZE_READ_AGG_1M_4M',
'MPIIO_SIZE_READ_AGG_4M_10M',
'MPIIO_SIZE_READ_AGG_10M_100M',
'MPIIO_SIZE_READ_AGG_100M_1G',
'MPIIO_SIZE_READ_AGG_1G_PLUS',
'MPIIO_SIZE_WRITE_AGG_0_100',
'MPIIO_SIZE_WRITE_AGG_100_1K',
'MPIIO_SIZE_WRITE_AGG_1K_10K',
'MPIIO_SIZE_WRITE_AGG_10K_100K',
'MPIIO_SIZE_WRITE_AGG_100K_1M',
'MPIIO_SIZE_WRITE_AGG_1M_4M',
'MPIIO_SIZE_WRITE_AGG_4M_10M',
'MPIIO_SIZE_WRITE_AGG_10M_100M',
'MPIIO_SIZE_WRITE_AGG_100M_1G',
'MPIIO_SIZE_WRITE_AGG_1G_PLUS',
'MPIIO_ACCESS1_ACCESS',
'MPIIO_ACCESS2_ACCESS',
'MPIIO_ACCESS3_ACCESS',
'MPIIO_ACCESS4_ACCESS',
'MPIIO_ACCESS1_COUNT',
'MPIIO_ACCESS2_COUNT',
'MPIIO_ACCESS3_COUNT',
'MPIIO_ACCESS4_COUNT',
'MPIIO_FASTEST_RANK',
'MPIIO_FASTEST_RANK_BYTES',
'MPIIO_SLOWEST_RANK',
'MPIIO_SLOWEST_RANK_BYTES']
%% Cell type:code id: tags:
``` python
darshan.counter_names("stdio")
# also note f counters: darshan.fcounter_names("stdio")
```
%%%% Output: execute_result
['STDIO_OPENS',
'STDIO_FDOPENS',
'STDIO_READS',
'STDIO_WRITES',
'STDIO_SEEKS',
'STDIO_FLUSHES',
'STDIO_BYTES_WRITTEN',
'STDIO_BYTES_READ',
'STDIO_MAX_BYTE_READ',
'STDIO_MAX_BYTE_WRITTEN',
'STDIO_FASTEST_RANK',
'STDIO_FASTEST_RANK_BYTES',
'STDIO_SLOWEST_RANK',
'STDIO_SLOWEST_RANK_BYTES']
%% Cell type:code id: tags:
``` python
posix_record = darshan.log_get_posix_record(log)
posix_record
```
%%%% Output: execute_result
{'counters': array([ 2049, 18446744073709551615, 18446744073709551615,
0, 16402, 16404,
0, 0, 0,
0, 18446744073709551615, 18446744073709551615,
0, 0, 0,
2199023259968, 0, 2199023261831,
0, 0, 0,
16384, 0, 0,
8, 16401, 1048576,
0, 134217728, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
4, 14, 0,
0, 0, 0,
0, 0, 16384,
0, 274743689216, 274743691264,
0, 0, 10240,
4096, 0, 0,
134217728, 272, 544,
328, 16384, 8,
2], dtype=uint64),
'fcounters': array([ 2.04900000e+03, -1.00000000e+00, -1.00000000e+00, 0.00000000e+00,
1.64020000e+04, 1.64040000e+04, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -1.00000000e+00, -1.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.19902326e+12,
0.00000000e+00, 2.19902326e+12, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 1.63840000e+04, 0.00000000e+00, 0.00000000e+00,
8.00000000e+00, 1.64010000e+04, 1.04857600e+06, 0.00000000e+00,
1.34217728e+08, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.00000000e+00,
1.40000000e+01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.63840000e+04,
0.00000000e+00, 2.74743689e+11, 2.74743691e+11, 0.00000000e+00,
0.00000000e+00, 1.02400000e+04, 4.09600000e+03, 0.00000000e+00,
0.00000000e+00, 1.34217728e+08, 2.72000000e+02, 5.44000000e+02,
3.28000000e+02, 1.63840000e+04, 8.00000000e+00, 2.00000000e+00])}
%% Cell type:code id: tags:
``` python
# access a single field
posix_record['counters'][darshan.counter_names("POSIX").index('POSIX_WRITES')]
```
%%%% Output: execute_result
16402
%% Cell type:code id: tags:
``` python
dict(zip(darshan.counter_names("POSIX"), posix_record['counters']))
```
%%%% Output: execute_result
{'POSIX_OPENS': 2049,
'POSIX_FILENOS': 18446744073709551615,
'POSIX_DUPS': 18446744073709551615,
'POSIX_READS': 0,
'POSIX_WRITES': 16402,
'POSIX_SEEKS': 16404,
'POSIX_STATS': 0,
'POSIX_MMAPS': 0,
'POSIX_FSYNCS': 0,
'POSIX_FDSYNCS': 0,
'POSIX_RENAME_SOURCES': 18446744073709551615,
'POSIX_RENAME_TARGETS': 18446744073709551615,
'POSIX_RENAMED_FROM': 0,
'POSIX_MODE': 0,
'POSIX_BYTES_READ': 0,
'POSIX_BYTES_WRITTEN': 2199023259968,
'POSIX_MAX_BYTE_READ': 0,
'POSIX_MAX_BYTE_WRITTEN': 2199023261831,
'POSIX_CONSEC_READS': 0,
'POSIX_CONSEC_WRITES': 0,
'POSIX_SEQ_READS': 0,
'POSIX_SEQ_WRITES': 16384,
'POSIX_RW_SWITCHES': 0,
'POSIX_MEM_NOT_ALIGNED': 0,
'POSIX_MEM_ALIGNMENT': 8,
'POSIX_FILE_NOT_ALIGNED': 16401,
'POSIX_FILE_ALIGNMENT': 1048576,
'POSIX_MAX_READ_TIME_SIZE': 0,
'POSIX_MAX_WRITE_TIME_SIZE': 134217728,
'POSIX_SIZE_READ_0_100': 0,
'POSIX_SIZE_READ_100_1K': 0,
'POSIX_SIZE_READ_1K_10K': 0,
'POSIX_SIZE_READ_10K_100K': 0,
'POSIX_SIZE_READ_100K_1M': 0,
'POSIX_SIZE_READ_1M_4M': 0,
'POSIX_SIZE_READ_4M_10M': 0,
'POSIX_SIZE_READ_10M_100M': 0,
'POSIX_SIZE_READ_100M_1G': 0,
'POSIX_SIZE_READ_1G_PLUS': 0,
'POSIX_SIZE_WRITE_0_100': 4,
'POSIX_SIZE_WRITE_100_1K': 14,
'POSIX_SIZE_WRITE_1K_10K': 0,
'POSIX_SIZE_WRITE_10K_100K': 0,
'POSIX_SIZE_WRITE_100K_1M': 0,
'POSIX_SIZE_WRITE_1M_4M': 0,
'POSIX_SIZE_WRITE_4M_10M': 0,
'POSIX_SIZE_WRITE_10M_100M': 0,
'POSIX_SIZE_WRITE_100M_1G': 16384,
'POSIX_SIZE_WRITE_1G_PLUS': 0,
'POSIX_STRIDE1_STRIDE': 274743689216,
'POSIX_STRIDE2_STRIDE': 274743691264,
'POSIX_STRIDE3_STRIDE': 0,
'POSIX_STRIDE4_STRIDE': 0,
'POSIX_STRIDE1_COUNT': 10240,
'POSIX_STRIDE2_COUNT': 4096,
'POSIX_STRIDE3_COUNT': 0,
'POSIX_STRIDE4_COUNT': 0,
'POSIX_ACCESS1_ACCESS': 134217728,
'POSIX_ACCESS2_ACCESS': 272,
'POSIX_ACCESS3_ACCESS': 544,
'POSIX_ACCESS4_ACCESS': 328,
'POSIX_ACCESS1_COUNT': 16384,
'POSIX_ACCESS2_COUNT': 8,
'POSIX_ACCESS3_COUNT': 2}
%% Cell type:raw id: tags:
record = darshan.log_get_stdio_record(log)
record['counters']
dict(zip(darshan.counter_names("STDIO"), record['counters']))
%% Cell type:markdown id: tags:
## Plotting
In addition to darshan log access, a number of functions to generate plots commonly found in darshan reports are provided in the plots submodule. To render a plot import from `darshan.plots` and generate the desired chart as follows:
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
# OP COUNTS
import darshan
log = darshan.log_open("example.darshan")
from darshan.plots import plot_opcounts
plot_opcounts(log)
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
# HIST POSIX
import darshan
log = darshan.log_open("example.darshan")
from darshan.plots import plot_access_histogram
plot_access_histogram(log, filter="posix")
```
%%%% Output: stream
log: <cdata 'void *' 0x55a3e09b8e40>
log: <cdata 'void *' 0x556ab7dc8710>
filter: posix
data: None
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
# HIST MPIIO
import darshan
log = darshan.log_open("example.darshan")
from darshan.plots import plot_access_histogram
plot_access_histogram(log, filter="mpiio")
```
%%%% Output: stream
log: <cdata 'void *' 0x55a3e0c31930>
log: <cdata 'void *' 0x556ab7db8f50>
filter: mpiio
data: None
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
### Close logs to release resources
Closing log files helps the system to free memory especially when many log files are analysed and memory can become a constraint.
%% Cell type:code id: tags:
``` python
darshan.log_close(log)
```
%% Cell type:code id: tags:
``` python
```
......
darshan=/home/pq/ANL/darshan-decaf/testbed/spack/opt/spack/linux-fedora29-x86_64/gcc-8.3.1/darshan-util-fork-onw37xwcivjmpw44onzryhuonj34l7db
all:
gcc -g -o program stdio_segfault.c -ldarshan-util
#include <stdio.h>
#include <stdlib.h>
#include <darshan-logutils.h>
int main(int argc, char const* argv[])
{
darshan_fd fd = darshan_log_open("example.darshan");
// get modules
/* * /
int count;
struct darshan_mod_info* mods = malloc(sizeof(struct darshan_mod_info));
// darshan-logutils.h:259:void darshan_log_get_modules (darshan_fd fd, struct darshan_mod_info **mods, int* count);
darshan_log_get_modules (fd, &mods, &count);
printf("get_modules(): count=%d, &mod_info=%p\n", count, &mods);
/* */
// get stdio record
void * buf = NULL; // important to initialize as NULL, as internal check relies on this!
//int mod_idx = 1; // POSIX: known for this example.darshan
int mod_idx = 7; // STDIO: known for this example.darshan
// darshan-logutils.h:260:int darshan_log_get_record (darshan_fd fd, int mod_idx, void **buf);
printf("get_record(): buf=%p\n", buf);
darshan_log_get_record(fd, mod_idx, &buf);
printf("get_record(): buf=%p\n", buf);
// get stdio record
void * buf2= NULL; // important to initialize as NULL, as internal check relies on this!
printf("get_record(): buf2=%p\n", buf2);
darshan_log_get_record(fd, mod_idx, &buf2);
printf("get_record(): buf2=%p\n", buf2);