darshan-parser.c 26.4 KB
Newer Older
1
2
3
4
5
/*
 *  (C) 2009 by Argonne National Laboratory.
 *      See COPYRIGHT in top-level directory.
 */

6
7
8
9
10
11
12
13
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <zlib.h>
#include <time.h>
14
#include <stdlib.h>
15
#include <getopt.h>
16

17
#include "darshan-logutils.h"
18

19
#include "uthash-1.9.2/src/uthash.h"
20
21
22
23

/*
 * Options
 */
Philip Carns's avatar
Philip Carns committed
24
25
26
27
#define OPTION_BASE  (1 << 0)  /* darshan log fields */
#define OPTION_TOTAL (1 << 1)  /* aggregated fields */
#define OPTION_PERF  (1 << 2)  /* derived performance */
#define OPTION_FILE  (1 << 3)  /* file count totals */
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#define OPTION_ALL (\
  OPTION_BASE|\
  OPTION_TOTAL|\
  OPTION_PERF|\
  OPTION_FILE)

#define FILETYPE_SHARED (1 << 0)
#define FILETYPE_UNIQUE (1 << 1)
#define FILETYPE_PARTSHARED (1 << 2)

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define max3(a,b,c) (((a) > (b)) ? (((a) > (c)) ? (a) : (c)) : (((b) > (c)) ? (b) : (c)))

/*
 * Datatypes
 */
typedef struct hash_entry_s
{
    UT_hash_handle hlink;
    int64_t hash;
    int64_t type;
    int64_t procs;
    int64_t counters[CP_NUM_INDICES];
    double  fcounters[CP_F_NUM_INDICES];
    double cumul_time;
    double meta_time;
} hash_entry_t;

typedef struct perf_data_s
{
    int64_t total_bytes;
    double slowest_rank_time;
    double slowest_rank_meta_time;
    double shared_time_by_cumul;
    double shared_time_by_open;
    double shared_time_by_open_lastio;
    double shared_time_by_slowest;
    double shared_meta_time;
    double agg_perf_by_cumul;
    double agg_perf_by_open;
    double agg_perf_by_open_lastio;
    double agg_perf_by_slowest;
70
71
    double *rank_cumul_io_time;
    double *rank_cumul_md_time;
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
} perf_data_t;

typedef struct file_data_s
{
    int64_t total;
    int64_t total_size;
    int64_t total_max;
    int64_t read_only;
    int64_t read_only_size;
    int64_t read_only_max;
    int64_t write_only;
    int64_t write_only_size;
    int64_t write_only_max;
    int64_t read_write;
    int64_t read_write_size;
    int64_t read_write_max;
    int64_t unique;
    int64_t unique_size;
    int64_t unique_max;
    int64_t shared;
    int64_t shared_size;
    int64_t shared_max;
} file_data_t;

/*
 * Prototypes
 */
void accum_perf(struct darshan_file *, hash_entry_t *, perf_data_t *);
void calc_perf(struct darshan_job *, hash_entry_t *, perf_data_t *);

void accum_file(struct darshan_file *, hash_entry_t *, file_data_t *);
void calc_file(struct darshan_job *, hash_entry_t *, file_data_t *);

int usage (char *exename)
{
    fprintf(stderr, "Usage: %s [options] <filename>\n", exename);
    fprintf(stderr, "    --all   : all sub-options are enabled\n");
    fprintf(stderr, "    --base  : darshan log field data [default]\n");
    fprintf(stderr, "    --file  : total file counts\n");
    fprintf(stderr, "    --perf  : derived perf data\n");
    fprintf(stderr, "    --total : aggregated darshan field data\n");

    exit(1);
}

int parse_args (int argc, char **argv, char **filename)
{
    int index;
    int mask;
    static struct option long_opts[] =
    {
        {"all",   0, NULL, OPTION_ALL},
        {"base",  0, NULL, OPTION_BASE},
        {"file",  0, NULL, OPTION_FILE},
        {"perf",  0, NULL, OPTION_PERF},
        {"total", 0, NULL, OPTION_TOTAL},
        {"help",  0, NULL, 0}
    };

    mask = 0;

    while(1)
    {
        int c = getopt_long(argc, argv, "", long_opts, &index);

        if (c == -1) break;

        switch(c)
        {
            case OPTION_ALL:
            case OPTION_BASE:
            case OPTION_FILE:
            case OPTION_PERF:
            case OPTION_TOTAL:
                mask |= c;
                break;
            case 0:
            case '?':
            default:
                usage(argv[0]);
                break;
        }
    }

    if (optind < argc)
    {
        *filename = argv[optind];
    }
    else
    {
        usage(argv[0]);
    }

    /* default mask value if none specified */
    if (mask == 0)
    {
        mask = OPTION_BASE;
    }

    return mask;
}

174
175
176
int main(int argc, char **argv)
{
    int ret;
177
178
    int mask;
    char *filename;
179
180
181
182
183
    struct darshan_job job;
    struct darshan_file cp_file;
    char tmp_string[1024];
    int no_files_flag = 0;
    time_t tmp_time = 0;
184
    darshan_fd file;
185
    int i;
186
    int mount_count;
187
    int64_t* devs;
188
189
    char** mnt_pts;
    char** fs_types;
190
    int last_rank = 0;
191

192
193
194
195
196
197
198
199
200
201
202
    hash_entry_t *file_hash = NULL;
    hash_entry_t *curr = NULL;
    hash_entry_t *tmp = NULL;
    hash_entry_t total;
    perf_data_t pdata;
    file_data_t fdata;

    memset(&pdata, 0, sizeof(pdata));
    memset(&total, 0, sizeof(total));

    mask = parse_args(argc, argv, &filename);
203

204
    file = darshan_log_open(filename);
205
206
    if(!file)
    {
207
        perror("darshan_log_open");
208
209
210
211
        return(-1);
    }
   
    /* read job info */
212
    ret = darshan_log_getjob(file, &job);
213
    if(ret < 0)
214
    {
215
        fprintf(stderr, "Error: unable to read job information from log file.\n");
216
        darshan_log_close(file);
217
218
219
        return(-1);
    }

220
221
222
    /* warn user about any missing information in this log format */
    darshan_log_print_version_warnings(&job);

223
    ret = darshan_log_getexe(file, tmp_string, &no_files_flag);
224
    if(ret < 0)
225
    {
226
        fprintf(stderr, "Error: unable to read trailing job information.\n");
227
        darshan_log_close(file);
228
229
230
        return(-1);
    }

231
    /* print job summary */
232
    printf("# darshan log version: %s\n", job.version_string);
233
234
    printf("# size of file statistics: %zu bytes\n", sizeof(cp_file));
    printf("# size of job statistics: %zu bytes\n", sizeof(job));
235
    printf("# exe: %s\n", tmp_string);
236
    printf("# uid: %lld\n", lld(job.uid));
237
    printf("# jobid: %lld\n", lld(job.jobid));
238
239
    printf("# start_time: %lld\n", lld(job.start_time));
    tmp_time += job.start_time;
240
    printf("# start_time_asci: %s", ctime(&tmp_time));
241
242
243
    printf("# end_time: %lld\n", lld(job.end_time));
    tmp_time = 0;
    tmp_time += job.end_time;
244
    printf("# end_time_asci: %s", ctime(&tmp_time));
245
246
    printf("# nprocs: %lld\n", lld(job.nprocs));
    printf("# run time: %lld\n", lld(job.end_time - job.start_time + 1));
247
248
249
250
 
    /* print table of mounted file systems */
    ret = darshan_log_getmounts(file, &devs, &mnt_pts, &fs_types, &mount_count,
        &no_files_flag);
251
    printf("\n# mounted file systems (device, mount point, and fs type)\n");
252
253
254
    printf("# -------------------------------------------------------\n");
    for(i=0; i<mount_count; i++)
    {
255
        printf("# mount entry: %lld\t%s\t%s\n", lld(devs[i]), mnt_pts[i], fs_types[i]);
256
257
    }
  
258
259
260
261
    if(no_files_flag)
    {
        /* it looks like the app didn't open any files */
        printf("# no files opened.\n");
262
        darshan_log_close(file);
263
264
265
        return(0);
    }

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    if ((mask & OPTION_BASE))
    {
        printf("\n# description of columns:\n");
        printf("#   <rank>: MPI rank.  -1 indicates that the file is shared\n");
        printf("#      across all processes and statistics are aggregated.\n");
        printf("#   <file>: hash of file path.  0 indicates that statistics\n");
        printf("#      are condensed to refer to all files opened at the given\n");
        printf("#      process.\n");
        printf("#   <counter> and <value>: statistical counters.\n");
        printf("#   <name suffix>: last %d characters of file name.\n", CP_NAME_SUFFIX_LEN);
        printf("#   <mount pt>: mount point that the file resides on.\n");
        printf("#   <fs type>: type of file system that the file resides on.\n");
        printf("\n# description of counters:\n");
        printf("#   CP_POSIX_*: posix operation counts.\n");
        printf("#   CP_COLL_*: MPI collective operation counts.\n");
        printf("#   CP_INDEP_*: MPI independent operation counts.\n");
        printf("#   CP_SPIT_*: MPI split collective operation counts.\n");
        printf("#   CP_NB_*: MPI non blocking operation counts.\n");
        printf("#   READS,WRITES,OPENS,SEEKS,STATS, and MMAPS are types of operations.\n");
        printf("#   CP_*_NC_OPENS: number of indep. and collective pnetcdf opens.\n");
        printf("#   CP_HDF5_OPENS: number of hdf5 opens.\n");
        printf("#   CP_COMBINER_*: combiner counts for MPI mem and file datatypes.\n");
        printf("#   CP_HINTS: number of times MPI hints were used.\n");
        printf("#   CP_VIEWS: number of times MPI file views were used.\n");
        printf("#   CP_MODE: mode that file was opened in.\n");
        printf("#   CP_BYTES_*: total bytes read and written.\n");
        printf("#   CP_MAX_BYTE_*: highest offset byte read and written.\n");
        printf("#   CP_CONSEC_*: number of exactly adjacent reads and writes.\n");
        printf("#   CP_SEQ_*: number of reads and writes from increasing offsets.\n");
        printf("#   CP_RW_SWITCHES: number of times access alternated between read and write.\n");
        printf("#   CP_*_ALIGNMENT: memory and file alignment.\n");
        printf("#   CP_*_NOT_ALIGNED: number of reads and writes that were not aligned.\n");
        printf("#   CP_MAX_*_TIME_SIZE: size of the slowest read and write operations.\n");
        printf("#   CP_SIZE_READ_*: histogram of read access sizes.\n");
        printf("#   CP_SIZE_READ_AGG_*: histogram of MPI datatype total sizes.\n");
        printf("#   CP_EXTENT_READ_*: histogram of MPI datatype extents.\n");
        printf("#   CP_STRIDE*_STRIDE: the four most common strides detected.\n");
        printf("#   CP_STRIDE*_COUNT: count of the four most common strides.\n");
        printf("#   CP_ACCESS*_ACCESS: the four most common access sizes.\n");
        printf("#   CP_ACCESS*_COUNT: count of the four most common access sizes.\n");
        printf("#   CP_DEVICE: device id reported by stat().\n");
        printf("#   CP_SIZE_AT_OPEN: size of file when first opened.\n");
        printf("#   CP_*_RANK_BYTES: fastest, slowest and variance of bytes transfer.\n");
        printf("#   CP_F_OPEN_TIMESTAMP: timestamp of first open (mpi or posix).\n");
        printf("#   CP_F_*_START_TIMESTAMP: timestamp of first read/write (mpi or posix).\n");
        printf("#   CP_F_*_END_TIMESTAMP: timestamp of last read/write (mpi or posix).\n");
        printf("#   CP_F_CLOSE_TIMESTAMP: timestamp of last close (mpi or posix).\n");
        printf("#   CP_F_POSIX_READ/WRITE_TIME: cumulative time spent in posix reads or writes.\n");
        printf("#   CP_F_MPI_READ/WRITE_TIME: cumulative time spent in mpi-io reads or writes.\n");
        printf("#   CP_F_POSIX_META_TIME: cumulative time spent in posix open, close, fsync, stat and seek, .\n");
        printf("#   CP_F_MPI_META_TIME: cumulative time spent in mpi-io open, close, set_view, and sync.\n");
        printf("#   CP_MAX_*_TIME: duration of the slowest read and write operations.\n");
        printf("#   CP_*_RANK_TIME: fastest, slowest variance of transfer time.\n");

        printf("\n");
        CP_PRINT_HEADER();
    }
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
    pdata.rank_cumul_io_time = malloc(sizeof(double)*job.nprocs);
    pdata.rank_cumul_md_time = malloc(sizeof(double)*job.nprocs);
    if (!pdata.rank_cumul_io_time || !pdata.rank_cumul_md_time)
    {
        perror("malloc failed");
        darshan_log_close(file);
        return(-1);
    }
    else
    {
        memset(pdata.rank_cumul_io_time, 0, sizeof(double)*job.nprocs);
        memset(pdata.rank_cumul_md_time, 0, sizeof(double)*job.nprocs);
    }

338
    while((ret = darshan_log_getfile(file, &job, &cp_file)) == 1)
339
    {
340
341
        char* mnt_pt = NULL;
        char* fs_type = NULL;
342
        hash_entry_t *hfile = NULL;
343
344
345
346

        if(cp_file.rank != -1 && cp_file.rank < last_rank)
        {
            fprintf(stderr, "Error: log file contains out of order rank data.\n");
347
            fflush(stderr);
348
349
350
351
            return(-1);
        }
        if(cp_file.rank != -1)
            last_rank = cp_file.rank;
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        
        for(i=0; i<mount_count; i++)
        {
            if(cp_file.counters[CP_DEVICE] == devs[i])
            {
                mnt_pt = mnt_pts[i];
                fs_type = fs_types[i];
                break;
            }
        }
        if(!mnt_pt)
            mnt_pt = "UNKNOWN";
        if(!fs_type)
            fs_type = "UNKNOWN";

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
        HASH_FIND(hlink,file_hash,&cp_file.hash,sizeof(int64_t),hfile);
        if (!hfile)
        {
            hfile = (hash_entry_t*) malloc(sizeof(*hfile));
            if (!hfile)
            {
                fprintf(stderr,"malloc failure");
                exit(1);
            }

            /* init */
            memset(hfile, 0, sizeof(*hfile));
            hfile->hash          = cp_file.hash;
            hfile->type          = 0;
            hfile->procs         = 0;
            hfile->cumul_time    = 0.0;
            hfile->meta_time     = 0.0;

            HASH_ADD(hlink,file_hash,hash,sizeof(int64_t),hfile);
        }

        accum_file(&cp_file, &total, NULL);
        accum_file(&cp_file, hfile, &fdata);
        accum_perf(&cp_file, hfile, &pdata);

        if ((mask & OPTION_BASE))
        {
            for(i=0; i<CP_NUM_INDICES; i++)
            {
                CP_PRINT(&job, &cp_file, i, mnt_pt, fs_type);
            }
            for(i=0; i<CP_F_NUM_INDICES; i++)
            {
                CP_F_PRINT(&job, &cp_file, i, mnt_pt, fs_type);
            }
        }
    }

    /* Total Calc */
    if ((mask & OPTION_TOTAL))
    {
408
409
        for(i=0; i<CP_NUM_INDICES; i++)
        {
410
            printf("total_%s: %lld\n",
Kevin Harms's avatar
Kevin Harms committed
411
                   darshan_names[i], lld(total.counters[i]));
412
413
414
        }
        for(i=0; i<CP_F_NUM_INDICES; i++)
        {
415
416
            printf("total_%s: %lf\n",
                   darshan_f_names[i], total.fcounters[i]);
417
        }
418
419
    }

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    /* Perf Calc */
    calc_perf(&job, file_hash, &pdata);
    if ((mask & OPTION_PERF))
    {
        printf("\n# performance\n");
        printf("# -----------\n");
        printf("# total_bytes: %lld\n", lld(pdata.total_bytes));
        printf("# slowest_rank_time: %lf\n", pdata.slowest_rank_time);
        printf("# slowest_rank_meta_time: %lf\n", pdata.slowest_rank_meta_time);
        printf("# shared_time_by_cumul: %lf\n", pdata.shared_time_by_cumul);
        printf("# shared_time_by_open: %lf\n", pdata.shared_time_by_open);
        printf("# shared_time_by_open_lastio: %lf\n", pdata.shared_time_by_open_lastio);
        printf("# shared_meta_time: %lf\n", pdata.shared_meta_time);
        printf("# agg_perf_by_cumul: %lf\n", pdata.agg_perf_by_cumul);
        printf("# agg_perf_by_open: %lf\n", pdata.agg_perf_by_open);
        printf("# agg_perf_by_open_lastio: %lf\n", pdata.agg_perf_by_open_lastio);
        printf("# agg_perf_by_slowest: %lf\n", pdata.agg_perf_by_slowest);
    }

    /* File Calc */
    calc_file(&job, file_hash, &fdata);
    if ((mask & OPTION_FILE))
    {
        printf("\n# files\n");
        printf("# -----\n");
        printf("# total: %lld %lld %lld\n",
               lld(fdata.total),
               lld(fdata.total_size),
               lld(fdata.total_max));
        printf("# read_only: %lld %lld %lld\n",
               lld(fdata.read_only),
               lld(fdata.read_only_size),
               lld(fdata.read_only_max));
        printf("# write_only: %lld %lld %lld\n",
               lld(fdata.write_only),
               lld(fdata.write_only_size),
               lld(fdata.write_only_max));
        printf("# read_write: %lld %lld %lld\n",
               lld(fdata.read_write),
               lld(fdata.read_write_size),
               lld(fdata.read_write_max));
        printf("# unique: %lld %lld %lld\n",
               lld(fdata.unique),
               lld(fdata.unique_size),
               lld(fdata.unique_max));
        printf("# shared: %lld %lld %lld\n",
               lld(fdata.shared),
               lld(fdata.shared_size),
               lld(fdata.shared_max));
    }

471
    if(ret < 0)
472
    {
473
        fprintf(stderr, "Error: failed to parse log file.\n");
474
        fflush(stderr);
475
476
477
        return(-1);
    }

478
479
480
481
482
    for(i=0; i<mount_count; i++)
    {
        free(mnt_pts[i]);
        free(fs_types[i]);
    }
483
484
485
486
487
488
    if(mount_count > 0)
    {
        free(devs);
        free(mnt_pts);
        free(fs_types);
    }
489
 
490
    darshan_log_close(file);
491
492
493
494
495
496
497

    HASH_ITER(hlink, file_hash, curr, tmp)
    {
        HASH_DELETE(hlink, file_hash, curr);
        free(curr);
    }

498
499
    return(0);
}
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

void accum_file(struct darshan_file *dfile,
                hash_entry_t *hfile, 
                file_data_t *fdata)
{
    int i;

    hfile->procs += 1;

    if (dfile->rank == -1)
    {
        hfile->type |= FILETYPE_SHARED;
    }
    else if (hfile->procs > 1)
    {
        hfile->type &= (~FILETYPE_UNIQUE);
        hfile->type |= FILETYPE_PARTSHARED;
    }
    else
    {
        hfile->type |= FILETYPE_UNIQUE;
    }

    for (i = 0; i < CP_NUM_INDICES; i++)
    {
        switch(i)
        {
        case CP_DEVICE:
        case CP_MODE:
        case CP_MEM_ALIGNMENT:
        case CP_FILE_ALIGNMENT:
            hfile->counters[i] = dfile->counters[i];
            break;
        case CP_SIZE_AT_OPEN:
            if (hfile->counters[i] == -1)
            {
                hfile->counters[i] = dfile->counters[i];
            }
            if (hfile->counters[i] > dfile->counters[i])
            {
                hfile->counters[i] = dfile->counters[i];
            }
            break;
        case CP_MAX_BYTE_READ:
        case CP_MAX_BYTE_WRITTEN:
            if (hfile->counters[i] == -1)
            {
                hfile->counters[i] = dfile->counters[i];
            }
            if (hfile->counters[i] < dfile->counters[i])
            {
                hfile->counters[i] = dfile->counters[i];
            }
            break;
        case CP_STRIDE1_COUNT:
        case CP_STRIDE2_COUNT:
        case CP_STRIDE3_COUNT:
        case CP_STRIDE4_COUNT:
        case CP_ACCESS1_COUNT:
        case CP_ACCESS2_COUNT:
        case CP_ACCESS3_COUNT:
        case CP_ACCESS4_COUNT:
            if (hfile->counters[i] == -1)
            {
                hfile->counters[i] = dfile->counters[i];
            }
            if (hfile->counters[i] < dfile->counters[i])
            {
                hfile->counters[i]   = dfile->counters[i];
                hfile->counters[i-4] = dfile->counters[i-4];
            }
            break;
        case CP_FASTEST_RANK:
        case CP_SLOWEST_RANK:
        case CP_FASTEST_RANK_BYTES:
        case CP_SLOWEST_RANK_BYTES:
            hfile->counters[i] = 0;
            break;
        case CP_MAX_READ_TIME_SIZE:
        case CP_MAX_WRITE_TIME_SIZE:
            break;
        default:
            hfile->counters[i] += dfile->counters[i];
            break;
        }
    }

    for (i = 0; i < CP_F_NUM_INDICES; i++)
    {
        switch(i)
        {
            case CP_F_FASTEST_RANK_TIME:
            case CP_F_SLOWEST_RANK_TIME:
            case CP_F_VARIANCE_RANK_TIME:
            case CP_F_VARIANCE_RANK_BYTES:
                hfile->fcounters[i] = 0;
                break;
            case CP_F_MAX_READ_TIME:
                if (hfile->fcounters[i] > dfile->fcounters[i])
                {
                    hfile->fcounters[i] = dfile->fcounters[i];
                    hfile->counters[CP_MAX_READ_TIME_SIZE] =
                        dfile->counters[CP_MAX_READ_TIME_SIZE];
                }
                break;
            case CP_F_MAX_WRITE_TIME:
                if (hfile->fcounters[i] > dfile->fcounters[i])
                {
                    hfile->fcounters[i] = dfile->fcounters[i];
                    hfile->counters[CP_MAX_WRITE_TIME_SIZE] =
                        dfile->counters[CP_MAX_WRITE_TIME_SIZE];
                }
                break;
            default:
                hfile->fcounters[i] += dfile->fcounters[i];
                break;
        }
    }

    return;
}


void calc_file(struct darshan_job *djob,
               hash_entry_t *file_hash, 
               file_data_t *fdata)
{
    hash_entry_t *curr = NULL;
    hash_entry_t *tmp = NULL;

    memset(fdata, 0, sizeof(*fdata));

    HASH_ITER(hlink, file_hash, curr, tmp)
    {
        int64_t max;
        int64_t r;
        int64_t w;

        max = max3(curr->counters[CP_SIZE_AT_OPEN],
                   curr->counters[CP_MAX_BYTE_READ],
                   curr->counters[CP_MAX_BYTE_WRITTEN]);

        r = (curr->counters[CP_POSIX_READS]+
             curr->counters[CP_POSIX_FREADS]+
             curr->counters[CP_INDEP_READS]+
             curr->counters[CP_COLL_READS]+
             curr->counters[CP_SPLIT_READS]+
             curr->counters[CP_NB_READS]);

        w = (curr->counters[CP_POSIX_WRITES]+
             curr->counters[CP_POSIX_FWRITES]+
             curr->counters[CP_INDEP_WRITES]+
             curr->counters[CP_COLL_WRITES]+
             curr->counters[CP_SPLIT_WRITES]+
             curr->counters[CP_NB_WRITES]);

        fdata->total += 1;
        fdata->total_size += max;
        fdata->total_max = max(fdata->total_max, max);

        if (r && !w)
        {
            fdata->read_only += 1;
            fdata->read_only_size += max;
            fdata->read_only_max = max(fdata->read_only_max, max);
        }

        if (!r && w)
        {
            fdata->write_only += 1;
            fdata->write_only_size += max;
            fdata->write_only_max = max(fdata->write_only_max, max);
        }

        if (r && w)
        {
            fdata->read_write += 1;
            fdata->read_write_size += max;
            fdata->read_write_max = max(fdata->read_write_max, max);
        }

        if ((curr->type & (FILETYPE_SHARED|FILETYPE_PARTSHARED)))
        {
            fdata->shared += 1;
            fdata->shared_size += max;
            fdata->shared_max = max(fdata->shared_max, max);
        }

        if ((curr->type & (FILETYPE_UNIQUE)))
        {
            fdata->unique += 1;
            fdata->unique_size += max;
            fdata->unique_max = max(fdata->unique_max, max);
        }
    }

    return;
}

void accum_perf(struct darshan_file *dfile,
                hash_entry_t *hfile,
                perf_data_t *pdata)
{
    int64_t mpi_file;

    pdata->total_bytes += dfile->counters[CP_BYTES_READ] +
                          dfile->counters[CP_BYTES_WRITTEN];

    mpi_file = dfile->counters[CP_INDEP_OPENS] +
               dfile->counters[CP_COLL_OPENS];

    /*
     * Calculation of Shared File Time
     *   Four Methods!!!!
     *     by_cumul: sum time counters and divide by nprocs
     *               (inaccurate if lots of variance between procs)
     *     by_open: difference between timestamp of open and close
     *              (inaccurate if file is left open without i/o happening)
     *     by_open_lastio: difference between timestamp of open and the
     *                     timestamp of last i/o
     *                     (similar to above but fixes case where file is left
     *                      open after io is complete)
     *     by_slowest: use slowest rank time from log data
     *                 (most accurate but requires newer log version)
     */
    if (dfile->rank == -1)
    {
        /* by_open (same for MPI or POSIX) */
        pdata->shared_time_by_open +=
            dfile->fcounters[CP_F_CLOSE_TIMESTAMP] -
            dfile->fcounters[CP_F_OPEN_TIMESTAMP];

        /* by_open_lastio (same for MPI or POSIX) */
        if (dfile->fcounters[CP_F_READ_END_TIMESTAMP] >
            dfile->fcounters[CP_F_WRITE_END_TIMESTAMP])
        {
            pdata->shared_time_by_open_lastio += 
                dfile->fcounters[CP_F_READ_END_TIMESTAMP] - 
                dfile->fcounters[CP_F_OPEN_TIMESTAMP];
        }
        else
        {
            pdata->shared_time_by_open_lastio += 
                dfile->fcounters[CP_F_WRITE_END_TIMESTAMP] - 
                dfile->fcounters[CP_F_OPEN_TIMESTAMP];
        }

        /* by_cumul */
        if (mpi_file)
        {
            pdata->shared_time_by_cumul +=
                dfile->fcounters[CP_F_MPI_META_TIME] +
                dfile->fcounters[CP_F_MPI_READ_TIME] +
                dfile->fcounters[CP_F_MPI_WRITE_TIME];
            pdata->shared_meta_time += dfile->fcounters[CP_F_MPI_META_TIME];
        }
        else
        {
            pdata->shared_time_by_cumul +=
                dfile->fcounters[CP_F_POSIX_META_TIME] +
                dfile->fcounters[CP_F_POSIX_READ_TIME] +
                dfile->fcounters[CP_F_POSIX_WRITE_TIME];
            pdata->shared_meta_time += dfile->fcounters[CP_F_POSIX_META_TIME];
        }

        /* by_slowest (same for MPI or POSIX) */
        pdata->shared_time_by_slowest +=
            dfile->fcounters[CP_F_SLOWEST_RANK_TIME];
    }

    /*
     * Calculation of Unique File Time
     *   record the data for each file and sum it 
     */
    else
    {
        if (mpi_file)
        {
            hfile->cumul_time += dfile->fcounters[CP_F_MPI_META_TIME] +
                                dfile->fcounters[CP_F_MPI_READ_TIME] +
                                dfile->fcounters[CP_F_MPI_WRITE_TIME];
            hfile->meta_time += dfile->fcounters[CP_F_MPI_META_TIME];
        }
        else
        {
             hfile->cumul_time += dfile->fcounters[CP_F_POSIX_META_TIME] +
                                 dfile->fcounters[CP_F_POSIX_READ_TIME] +
                                 dfile->fcounters[CP_F_POSIX_WRITE_TIME];
             hfile->meta_time += dfile->fcounters[CP_F_POSIX_META_TIME];
        }
790
791
792

        pdata->rank_cumul_io_time[dfile->rank] += hfile->cumul_time;
        pdata->rank_cumul_md_time[dfile->rank] += hfile->meta_time;
793
794
795
796
797
798
799
800
801
    }

    return;
}

void calc_perf(struct darshan_job *djob,
               hash_entry_t *hash_rank_uniq,
               perf_data_t *pdata)
{
802
    int64_t i;
803
804
805
806
807
808

    pdata->shared_time_by_cumul =
        pdata->shared_time_by_cumul / (double)djob->nprocs;

    pdata->shared_meta_time = pdata->shared_meta_time / (double)djob->nprocs;

809
    for (i=0; i<djob->nprocs; i++)
810
    {
811
        if (pdata->rank_cumul_io_time[i] > pdata->slowest_rank_time)
812
        {
813
            pdata->slowest_rank_time = pdata->rank_cumul_io_time[i];
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        }
    }

    pdata->agg_perf_by_cumul = ((double)pdata->total_bytes / 1048576.0) /
                               (pdata->slowest_rank_time +
                                pdata->shared_time_by_cumul);
    pdata->agg_perf_by_open  = ((double)pdata->total_bytes / 1048576.0) / 
                               (pdata->slowest_rank_time +
                                pdata->shared_time_by_open);
    pdata->agg_perf_by_open_lastio = ((double)pdata->total_bytes / 1048576.0) /
                                     (pdata->slowest_rank_time +
                                      pdata->shared_time_by_open_lastio);
    if (pdata->slowest_rank_time + pdata->shared_time_by_slowest)
    pdata->agg_perf_by_slowest = ((double)pdata->total_bytes / 1048576.0) /
                                 (pdata->slowest_rank_time +
                                  pdata->shared_time_by_slowest);

    return;
}