model-net-mpi-replay.c 99 KB
Newer Older
1
/*
2
* Copyright (C) 2014 University of Chicago.
3 4 5 6 7
 * See COPYRIGHT notice in top-level directory.
 *
 */
#include <ross.h>
#include <inttypes.h>
8
#include <sys/stat.h>
9
#include <sys/resource.h>
10 11 12 13 14 15 16
#include "codes/codes-workload.h"
#include "codes/codes.h"
#include "codes/configuration.h"
#include "codes/codes_mapping.h"
#include "codes/model-net.h"
#include "codes/rc-stack.h"
#include "codes/quicklist.h"
17
#include "codes/quickhash.h"
18
#include "codes/codes-jobmap.h"
19

20
/* turning on track lp will generate a lot of output messages */
21
#define MN_LP_NM "modelnet_dragonfly_custom"
22
#define CONTROL_MSG_SZ 64
23
#define TRACE -1
24
#define MAX_WAIT_REQS 1024
25
#define CS_LP_DBG 1
26 27
#define RANK_HASH_TABLE_SZ 2000
#define NW_LP_NM "nw-lp"
28 29 30
#define lprintf(_fmt, ...) \
        do {if (CS_LP_DBG) printf(_fmt, __VA_ARGS__);} while (0)
#define MAX_STATS 65536
31 32
#define COL_TAG 1235
#define BAR_TAG 1234
33

34 35 36
static int msg_size_hash_compare(
            void *key, struct qhash_head *link);

37
static unsigned long perm_switch_thresh = 8388608;
38

39
/* NOTE: Message tracking works in sequential mode only! */
40
static int debug_cols = 0;
41
static int synthetic_pattern = 1;
42 43 44 45 46
/* Turning on this option slows down optimistic mode substantially. Only turn
 * on if you get issues with wait-all completion with traces. */
static int preserve_wait_ordering = 0;
static int enable_msg_tracking = 0;
static int is_synthetic = 0;
47
static unsigned long long max_gen_data = 1310720;
48
static int num_qos_levels;
49
static double compute_time_speedup;
50
tw_lpid TRACK_LP = -1;
51
int nprocs = 0;
52
static double total_syn_data = 0;
53
static int unmatched = 0;
54
char workload_type[128];
55
char workload_name[128];
56 57 58 59
char workload_file[8192];
char offset_file[8192];
static int wrkld_id;
static int num_net_traces = 0;
60
static int priority_type = 0;
61
static int num_dumpi_traces = 0;
62
static int64_t EAGER_THRESHOLD = 8192;
63

64
static long num_ops = 0;
65
static int upper_threshold = 1048576;
66
static int alloc_spec = 0;
67 68
static tw_stime self_overhead = 10.0;
static tw_stime mean_interval = 100000;
69
static int payload_sz = 1024;
70 71

/* Doing LP IO*/
72
static char * params = NULL;
73
static char lp_io_dir[256] = {'\0'};
74
static char sampling_dir[32] = {'\0'};
75
static char mpi_msg_dir[32] = {'\0'};
76 77 78 79
static lp_io_handle io_handle;
static unsigned int lp_io_use_suffix = 0;
static int do_lp_io = 0;

80 81 82 83
/* variables for loading multiple applications */
char workloads_conf_file[8192];
char alloc_file[8192];
int num_traces_of_job[5];
84 85 86
tw_stime soft_delay_mpi = 2500;
tw_stime nic_delay = 1000;
tw_stime copy_per_byte_eager = 0.55;
87 88 89 90 91
char file_name_of_job[5][8192];

struct codes_jobmap_ctx *jobmap_ctx;
struct codes_jobmap_params_list jobmap_p;

92 93
/* Variables for Cortex Support */
/* Matthieu's additions start */
94
#ifdef ENABLE_CORTEX_PYTHON
95 96 97
static char cortex_file[512] = "\0";
static char cortex_class[512] = "\0";
static char cortex_gen[512] = "\0";
98
#endif
99 100
/* Matthieu's additions end */

101 102
typedef struct nw_state nw_state;
typedef struct nw_message nw_message;
103
typedef unsigned int dumpi_req_id;
104 105

static int net_id = 0;
106
static float noise = 1.0;
107 108 109
static int num_nw_lps = 0, num_mpi_lps = 0;

static int num_syn_clients;
110
static int syn_type = 0;
111

112
FILE * workload_log = NULL;
113
FILE * msg_size_log = NULL;
114 115 116 117
FILE * workload_agg_log = NULL;
FILE * workload_meta_log = NULL;

static uint64_t sample_bytes_written = 0;
118

119 120
unsigned long long num_bytes_sent=0;
unsigned long long num_bytes_recvd=0;
121

122 123
unsigned long long num_syn_bytes_sent = 0;
unsigned long long num_syn_bytes_recvd = 0;
124

125 126 127 128 129 130
double max_time = 0,  max_comm_time = 0, max_wait_time = 0, max_send_time = 0, max_recv_time = 0;
double avg_time = 0, avg_comm_time = 0, avg_wait_time = 0, avg_send_time = 0, avg_recv_time = 0;


/* runtime option for disabling computation time simulation */
static int disable_delay = 0;
131 132 133
static int enable_sampling = 0;
static double sampling_interval = 5000000;
static double sampling_end_time = 3000000000;
134
static int enable_debug = 0;
135

136
/* set group context */
137 138 139 140 141 142 143 144 145 146 147
struct codes_mctx mapping_context;
enum MAPPING_CONTEXTS
{
    GROUP_RATIO=1,
    GROUP_RATIO_REVERSE,
    GROUP_DIRECT,
    GROUP_MODULO,
    GROUP_MODULO_REVERSE,
    UNKNOWN
};
static int map_ctxt = GROUP_MODULO;
148

149
/* MPI_OP_GET_NEXT is for getting next MPI operation when the previous operation completes.
150
* MPI_SEND_ARRIVED is issued when a MPI message arrives at its destination (the message is transported by model-net and an event is invoked when it arrives.
151 152 153 154 155 156 157
* MPI_SEND_POSTED is issued when a MPI message has left the source LP (message is transported via model-net). */
enum MPI_NW_EVENTS
{
	MPI_OP_GET_NEXT=1,
	MPI_SEND_ARRIVED,
    MPI_SEND_ARRIVED_CB, // for tracking message times on sender
	MPI_SEND_POSTED,
158 159 160 161 162 163
    MPI_REND_ARRIVED,
    MPI_REND_ACK_ARRIVED,
    CLI_BCKGND_FIN,
    CLI_BCKGND_ARRIVE,
    CLI_BCKGND_GEN,
    CLI_NBR_FINISH,
164 165
};

166 167 168 169 170 171
/* type of synthetic traffic */
enum TRAFFIC
{
    UNIFORM = 1, /* sends message to a randomly selected node */
    NEAREST_NEIGHBOR = 2, /* sends message to the next node (potentially connected to the same router) */
    ALLTOALL = 3, /* sends message to all other nodes */
172 173
    STENCIL = 4, /* sends message to 4 nearby neighbors */
    PERMUTATION = 5
174
};
175 176 177 178
struct mpi_workload_sample
{
    /* Sampling data */
    int nw_id;
179
    int app_id;
180 181 182 183 184
    unsigned long num_sends_sample;
    unsigned long num_bytes_sample;
    unsigned long num_waits_sample;
    double sample_end_time;
};
185 186 187 188 189 190 191
/* stores pointers of pending MPI operations to be matched with their respective sends/receives. */
struct mpi_msgs_queue
{
    int op_type;
    int tag;
    int source_rank;
    int dest_rank;
192
    int64_t num_bytes;
193
    int64_t seq_id;
194 195 196 197 198 199 200 201
    tw_stime req_init_time;
	dumpi_req_id req_id;
    struct qlist_head ql;
};

/* stores request IDs of completed MPI operations (Isends or Irecvs) */
struct completed_requests
{
202
	unsigned int req_id;
203
    struct qlist_head ql;
204
    int index;
205 206 207 208 209 210
};

/* for wait operations, store the pending operation and number of completed waits so far. */
struct pending_waits
{
    int op_type;
211
    unsigned int req_ids[MAX_WAIT_REQS];
212
	int num_completed;
213 214
	int count;
    tw_stime start_time;
215 216 217
    struct qlist_head ql;
};

218 219 220 221 222 223
struct msg_size_info
{
    int64_t msg_size;
    int num_msgs;
    tw_stime agg_latency;
    tw_stime avg_latency;
224
    struct qhash_head  hash_link;
225 226
    struct qlist_head ql; 
};
227 228 229 230 231 232 233 234 235 236 237 238 239 240

struct ross_model_sample
{
    tw_lpid nw_id;
    int app_id;
    int local_rank;
    unsigned long num_sends;
    unsigned long num_recvs;
    unsigned long long num_bytes_sent;
    unsigned long long num_bytes_recvd;
    double send_time;
    double recv_time;
    double wait_time;
    double compute_time;
241 242 243
    double comm_time;
    double max_time;
    double avg_msg_time;
244 245
};

246 247 248 249 250 251 252 253 254 255
typedef struct mpi_msgs_queue mpi_msgs_queue;
typedef struct completed_requests completed_requests;
typedef struct pending_waits pending_waits;

/* state of the network LP. It contains the pointers to send/receive lists */
struct nw_state
{
	long num_events_per_lp;
	tw_lpid nw_id;
	short wrkld_end;
256 257
    int app_id;
    int local_rank;
258

259
    int synthetic_pattern;
260 261 262
    int is_finished;
    int neighbor_completed;

263
    struct rc_stack * processed_ops;
264
    struct rc_stack * processed_wait_op;
265
    struct rc_stack * matched_reqs;
266
//    struct rc_stack * indices;
267 268 269 270 271 272 273 274 275 276

    /* count of sends, receives, collectives and delays */
	unsigned long num_sends;
	unsigned long num_recvs;
	unsigned long num_cols;
	unsigned long num_delays;
	unsigned long num_wait;
	unsigned long num_waitall;
	unsigned long num_waitsome;

277

278 279
	/* time spent by the LP in executing the app trace*/
	double start_time;
280 281 282 283 284 285 286 287 288

    double col_time;

    double reduce_time;
    int num_reduce;

    double all_reduce_time;
    int num_all_reduce;

289 290 291 292 293
	double elapsed_time;
	/* time spent in compute operations */
	double compute_time;
	/* time spent in message send/isend */
	double send_time;
294 295
    /* max time for synthetic traffic message */
    double max_time;
296 297 298 299 300 301 302 303 304 305
	/* time spent in message receive */
	double recv_time;
	/* time spent in wait operation */
	double wait_time;
	/* FIFO for isend messages arrived on destination */
	struct qlist_head arrival_queue;
	/* FIFO for irecv messages posted but not yet matched with send operations */
	struct qlist_head pending_recvs_queue;
	/* List of completed send/receive requests */
	struct qlist_head completed_reqs;
306

307
    tw_stime cur_interval_end;
308
    
309 310
    /* Pending wait operation */
    struct pending_waits * wait_op;
311

312 313 314 315 316 317
    /* Message size latency information */
    struct qhash_table * msg_sz_table;
    struct qlist_head msg_sz_list;

    /* quick hash for maintaining message latencies */

318 319
    unsigned long long num_bytes_sent;
    unsigned long long num_bytes_recvd;
320

321 322
    unsigned long long syn_data;
    unsigned long long gen_data;
323 324
  
    unsigned long prev_switch;
325
    int saved_perm_dest;
326 327
    unsigned long rc_perm;

328 329 330 331
    /* For sampling data */
    int sampling_indx;
    int max_arr_size;
    struct mpi_workload_sample * mpi_wkld_samples;
332
    char output_buf[512];
333
    char col_stats[64];
334
    struct ross_model_sample ross_sample;
335 336 337 338
};

/* data for handling reverse computation.
* saved_matched_req holds the request ID of matched receives/sends for wait operations.
339
* ptr_match_op holds the matched MPI operation which are removed from the queues when a send is matched with the receive in forward event handler.
340 341 342
* network event being sent. op is the MPI operation issued by the network workloads API. rv_data holds the data for reverse computation (TODO: Fill this data structure only when the simulation runs in optimistic mode). */
struct nw_message
{
343
   // forward message handler
344
   int msg_type;
345
   int op_type;
346
   model_net_event_return event_rc;
347
   struct codes_workload_op * mpi_op;
348

349 350 351
   struct
   {
       tw_lpid src_rank;
352
       int dest_rank;
353
       int64_t num_bytes;
354 355 356 357 358
       int num_matched;
       int data_type;
       double sim_start_time;
       // for callbacks - time message was received
       double msg_send_time;
359
       unsigned int req_id;
360
       int matched_req;
361
       int tag;
362
       int app_id;
363 364
       int found_match;
       short wait_completed;
365
       short rend_send;
366 367 368
   } fwd;
   struct
   {
369
       int saved_perm;
370
       double saved_send_time;
371
       double saved_send_time_sample;
372
       double saved_recv_time;
373
       double saved_recv_time_sample;
374
       double saved_wait_time;
375
       double saved_wait_time_sample;
376
       double saved_delay;
377
       double saved_delay_sample;
378
       int64_t saved_num_bytes;
379
       int saved_syn_length;
380
       unsigned long saved_prev_switch;
381
       double saved_prev_max_time;
382
   } rc;
383 384
};

385
static void send_ack_back(nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp, mpi_msgs_queue * mpi_op, int matched_req);
386 387

static void send_ack_back_rc(nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
388 389
/* executes MPI isend and send operations */
static void codes_exec_mpi_send(
390
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp* lp, struct codes_workload_op * mpi_op, int is_rend);
391 392
/* execute MPI irecv operation */
static void codes_exec_mpi_recv(
393
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp, struct codes_workload_op * mpi_op);
394 395
/* reverse of mpi recv function. */
static void codes_exec_mpi_recv_rc(
396
        nw_state* s, tw_bf * bf, nw_message* m, tw_lp* lp);
397 398
/* execute the computational delay */
static void codes_exec_comp_delay(
399
        nw_state* s, tw_bf *bf, nw_message * m, tw_lp* lp, struct codes_workload_op * mpi_op);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/* gets the next MPI operation from the network-workloads API. */
static void get_next_mpi_operation(
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
/* reverse handler of get next mpi operation. */
static void get_next_mpi_operation_rc(
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
/* Makes a call to get_next_mpi_operation. */
static void codes_issue_next_event(tw_lp* lp);
/* reverse handler of next operation */
static void codes_issue_next_event_rc(tw_lp* lp);


///////////////////// HELPER FUNCTIONS FOR MPI MESSAGE QUEUE HANDLING ///////////////
/* upon arrival of local completion message, inserts operation in completed send queue */
/* upon arrival of an isend operation, updates the arrival queue of the network */
415 416 417 418 419 420 421 422
static void update_completed_queue(
        nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp, dumpi_req_id req_id);
/* reverse of the above function */
static void update_completed_queue_rc(
        nw_state*s,
        tw_bf * bf,
        nw_message * m,
        tw_lp * lp);
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
static void update_arrival_queue(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* reverse of the above function */
static void update_arrival_queue_rc(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* callback to a message sender for computing message time */
static void update_message_time(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* reverse for computing message time */
static void update_message_time_rc(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);

/* conversion from seconds to eanaoseconds */
static tw_stime s_to_ns(tw_stime ns);

438
/*static void update_message_size_rc(
439 440 441 442
        struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
443
{*/
444
/*TODO: Complete reverse handler */
445
/*    (void)ns;
446 447 448
    (void)lp;
    (void)bf;
    (void)m;
449
}*/
450 451 452 453 454 455 456 457 458 459
/* update the message size */
static void update_message_size(
        struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m,
        mpi_msgs_queue * qitem,
        int is_eager,
        int is_send)
{
460 461 462
            (void)bf;
            (void)is_eager;

463 464 465
            struct qhash_head * hash_link = NULL;
            tw_stime msg_init_time = qitem->req_init_time;
        
466
            if(ns->msg_sz_table == NULL)
467 468 469 470 471 472 473 474 475 476
                ns->msg_sz_table = qhash_init(msg_size_hash_compare, quickhash_64bit_hash, RANK_HASH_TABLE_SZ); 
            
            hash_link = qhash_search(ns->msg_sz_table, &(qitem->num_bytes));

            if(is_send)
                msg_init_time = m->fwd.sim_start_time;
            
            /* update hash table */
            if(!hash_link)
            {
477
                struct msg_size_info * msg_info = (struct msg_size_info*)malloc(sizeof(struct msg_size_info));
478 479
                msg_info->msg_size = qitem->num_bytes;
                msg_info->num_msgs = 1;
480
                msg_info->agg_latency = tw_now(lp) - msg_init_time;
481
                msg_info->avg_latency = msg_info->agg_latency;
482 483
                assert(ns->msg_sz_table);
                qhash_add(ns->msg_sz_table, &(msg_info->msg_size), &(msg_info->hash_link));
484 485 486 487 488 489 490
                qlist_add(&msg_info->ql, &ns->msg_sz_list);
                //printf("\n Msg size %d aggregate latency %f num messages %d ", m->fwd.num_bytes, msg_info->agg_latency, msg_info->num_msgs);
            }
            else
            {
                struct msg_size_info * tmp = qhash_entry(hash_link, struct msg_size_info, hash_link);
                tmp->num_msgs++;
491
                tmp->agg_latency += tw_now(lp) - msg_init_time;  
492
                tmp->avg_latency = (tmp->agg_latency / tmp->num_msgs);
493
//                printf("\n Msg size %lld aggregate latency %f num messages %d ", qitem->num_bytes, tmp->agg_latency, tmp->num_msgs);
494 495 496 497 498 499 500 501
            }
}
static void notify_background_traffic_rc(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
502 503 504
    (void)ns;
    (void)bf;
    (void)m;
505 506 507 508 509
        
    int num_jobs = codes_jobmap_get_num_jobs(jobmap_ctx); 
    
    for(int i = 0; i < num_jobs - 1; i++)
        tw_rand_reverse_unif(lp->rng); 
510 511 512 513 514 515 516 517
}

static void notify_background_traffic(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
518 519 520
        (void)bf;
        (void)m;

521 522 523 524
        struct codes_jobmap_id jid; 
        jid = codes_jobmap_to_local_id(ns->nw_id, jobmap_ctx);
        
        int num_jobs = codes_jobmap_get_num_jobs(jobmap_ctx); 
525 526
        
        for(int other_id = 0; other_id < num_jobs; other_id++)
527
        {
528 529
            if(other_id == jid.job)
                continue;
530 531 532 533 534 535

            struct codes_jobmap_id other_jid;
            other_jid.job = other_id;

            int num_other_ranks = codes_jobmap_get_num_ranks(other_id, jobmap_ctx);

536
            lprintf("\n Other ranks %d ", num_other_ranks);
537
            tw_stime ts = (1.1 * g_tw_lookahead) + tw_rand_exponential(lp->rng, noise);
538 539 540 541 542 543 544 545 546 547 548
            tw_lpid global_dest_id;
     
            for(int k = 0; k < num_other_ranks; k++)    
            {
                other_jid.rank = k;
                int intm_dest_id = codes_jobmap_to_global_id(other_jid, jobmap_ctx); 
                global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);

                tw_event * e;
                struct nw_message * m_new;  
                e = tw_event_new(global_dest_id, ts, lp);
549
                m_new = (struct nw_message*)tw_event_data(e);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
                m_new->msg_type = CLI_BCKGND_FIN;
                tw_event_send(e);   
            }
        }
        return;
}
static void notify_neighbor_rc(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
       if(bf->c0)
       {
            notify_background_traffic_rc(ns, lp, bf, m);
            return;
       }
   
       if(bf->c1)
       {
          tw_rand_reverse_unif(lp->rng); 
       }
} 
static void notify_neighbor(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
579
    if(ns->local_rank == num_dumpi_traces - 1 
580 581 582
            && ns->is_finished == 1
            && ns->neighbor_completed == 1)
    {
583 584 585
//        printf("\n All workloads completed, notifying background traffic ");
        bf->c0 = 1;
        notify_background_traffic(ns, lp, bf, m);
586 587 588 589 590 591 592 593 594 595 596
        return;
    }
    
    struct codes_jobmap_id nbr_jid;
    nbr_jid.job = ns->app_id;
    tw_lpid global_dest_id;

    if(ns->is_finished == 1 && (ns->neighbor_completed == 1 || ns->local_rank == 0))
    {
        bf->c1 = 1;

597
//        printf("\n Local rank %d notifying neighbor %d ", ns->local_rank, ns->local_rank+1);
598
        tw_stime ts = (1.1 * g_tw_lookahead) + tw_rand_exponential(lp->rng, noise);
599 600 601 602 603 604 605 606 607
        nbr_jid.rank = ns->local_rank + 1;
        
        /* Send a notification to the neighbor about completion */
        int intm_dest_id = codes_jobmap_to_global_id(nbr_jid, jobmap_ctx); 
        global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);
       
        tw_event * e;
        struct nw_message * m_new;  
        e = tw_event_new(global_dest_id, ts, lp);
608
        m_new = (struct nw_message*)tw_event_data(e); 
609 610 611 612 613 614 615 616 617 618
        m_new->msg_type = CLI_NBR_FINISH;
        tw_event_send(e);   
    }
}
void finish_bckgnd_traffic_rc(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
619 620 621 622
        (void)b;
        (void)msg;
        (void)lp;

623 624 625 626 627 628 629 630 631
        ns->is_finished = 0;
        return;
}
void finish_bckgnd_traffic(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
632 633
        (void)b;
        (void)msg;
634
        ns->is_finished = 1;
635
        lprintf("\n LP %llu completed sending data %lu completed at time %lf ", LLU(lp->gid), ns->gen_data, tw_now(lp));
636
        
637 638 639 640 641 642 643 644 645 646
        return;
}

void finish_nbr_wkld_rc(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
    ns->neighbor_completed = 0;
647
    
648 649 650 651 652 653 654 655 656 657
    notify_neighbor_rc(ns, lp, b, msg);
}

void finish_nbr_wkld(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
    ns->neighbor_completed = 1;
658

659 660 661 662 663 664 665
    notify_neighbor(ns, lp, b, msg);
}
static void gen_synthetic_tr_rc(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
    if(bf->c0)
        return;

666 667 668 669 670 671
    if(bf->c1)
    {
        tw_rand_reverse_unif(lp->rng);
    }
    if(bf->c2)
    {
672
        s->prev_switch = m->rc.saved_prev_switch;
673
        s->saved_perm_dest = m->rc.saved_perm;
674 675
        tw_rand_reverse_unif(lp->rng);
    }
676 677 678 679 680
    int i;
    for (i=0; i < m->rc.saved_syn_length; i++){
        model_net_event_rc2(lp, &m->event_rc);
        s->gen_data -= payload_sz;
        num_syn_bytes_sent -= payload_sz;
681
        s->num_bytes_sent -= payload_sz;
682
        s->ross_sample.num_bytes_sent -= payload_sz;
683 684
    }
        tw_rand_reverse_unif(lp->rng);
685
        s->num_sends--;
686
        s->ross_sample.num_sends--;
687

688 689
     if(bf->c5)
         s->is_finished = 0;
690 691 692 693 694 695 696 697 698 699 700 701 702
}

/* generate synthetic traffic */
static void gen_synthetic_tr(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
    if(s->is_finished == 1)
    {
        bf->c0 = 1;
        return;
    }

    /* Get job information */
    tw_lpid global_dest_id;
703 704
    int intm_dest_id;
    nw_message remote_m;
705 706 707 708 709 710

    struct codes_jobmap_id jid;
    jid = codes_jobmap_to_local_id(s->nw_id, jobmap_ctx); 

    int num_clients = codes_jobmap_get_num_ranks(jid.job, jobmap_ctx);

711 712 713 714
    /* Find destination */
    int* dest_svr = NULL; 
    int i, length=0;
    switch(s->synthetic_pattern)
715
    {
716 717
        case UNIFORM:
        {
718
            bf->c1 = 1;
719 720 721 722 723 724 725
            length = 1;
            dest_svr = (int*) calloc(1, sizeof(int));
            dest_svr[0] = tw_rand_integer(lp->rng, 0, num_clients - 1);
            if(dest_svr[0] == s->local_rank)
                dest_svr[0] = (s->local_rank + 1) % num_clients;
        }
        break;
726 727 728

        case PERMUTATION:
        {
729 730
            m->rc.saved_prev_switch = s->prev_switch; //for reverse computation

731 732
            length = 1;
            dest_svr = (int*) calloc(1, sizeof(int));
733
            if(s->gen_data - s->prev_switch >= perm_switch_thresh)
734
            {
735
                // printf("%d - %d >= %d\n",s->gen_data,s->prev_switch,perm_switch_thresh);
736
                bf->c2 = 1;
737
                m->rc.saved_prev_switch = s->prev_switch;
738
                s->prev_switch = s->gen_data; //Amount of data pushed at time when switch initiated
739 740 741
                dest_svr[0] = tw_rand_integer(lp->rng, 0, num_clients - 1);
                if(dest_svr[0] == s->local_rank)
                    dest_svr[0] = (s->local_rank + num_clients/2) % num_clients;
742 743
                /* TODO: Fix random number generation code */
                m->rc.saved_perm = s->saved_perm_dest;
744
                s->saved_perm_dest = dest_svr[0];
745
                assert(s->saved_perm_dest != s->local_rank);
746 747 748
            }
            else
                dest_svr[0] = s->saved_perm_dest;
749 750

            assert(dest_svr[0] != s->local_rank);
751 752
        }
        break;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        case NEAREST_NEIGHBOR:
        {
            length = 1;
            dest_svr = (int*) calloc(1, sizeof(int));
            dest_svr[0] = (s->local_rank + 1) % num_clients;
        }
        break;
        case ALLTOALL:
        {
            dest_svr = (int*) calloc(num_clients-1, sizeof(int));
            int index = 0;
            for (i=0;i<num_clients;i++)
            {
                if(i!=s->local_rank) 
                {
                    dest_svr[index] = i;
                    index++;
                    length++;
                }
            }
        }
        break;
        case STENCIL:  //2D 4-point stencil
        {
            /* I think this code snippet is coming from the LLNL stencil patterns. */
            int digits, x=1, y=1, row, col, temp=num_clients;
            length = 4;
            dest_svr = (int*) calloc(4, sizeof(int));
            for (digits = 0; temp > 0; temp >>= 1)
                digits++;
            digits = digits/2;
            for (i = 0; i < digits; i++)
                x = x * 2;
            y = num_clients / x;
            //printf("\nStencil Syn: x=%d, y=%d", x, y);
            row = s->local_rank / y;
            col = s->local_rank % y;

            dest_svr[0] = row * y + ((col-1+y)%y);   /* left neighbor */
            dest_svr[1] = row * y + ((col+1+y)%y);   /* right neighbor */
            dest_svr[2] = ((row-1+x)%x) * y + col;   /* bottom neighbor */
            dest_svr[3] = ((row+1+x)%x) * y + col;   /* up neighbor */
        }
        break;
        default:
            tw_error(TW_LOC, "Undefined traffic pattern");
    }   
    /* Record length for reverse handler*/
    m->rc.saved_syn_length = length;
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    if(length > 0)
    {
        // m->event_array_rc = (model_net_event_return) malloc(length * sizeof(model_net_event_return));
        //printf("\nRANK %d Dests %d", s->local_rank, length);
        for (i = 0; i < length; i++)
        {
            /* Generate synthetic traffic */
            jid.rank = dest_svr[i];
            intm_dest_id = codes_jobmap_to_global_id(jid, jobmap_ctx); 
            global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);

            remote_m.fwd.sim_start_time = tw_now(lp);
            remote_m.fwd.dest_rank = dest_svr[i];
            remote_m.msg_type = CLI_BCKGND_ARRIVE;
            remote_m.fwd.num_bytes = payload_sz;
            remote_m.fwd.app_id = s->app_id;
            remote_m.fwd.src_rank = s->local_rank;

            // printf("\nAPP %d SRC %d Dest %d (twid %llu)", jid.job, s->local_rank, dest_svr[i], global_dest_id);
822
            m->event_rc = model_net_event(net_id, "medium", global_dest_id, payload_sz, 0.0, 
823 824 825 826
                    sizeof(nw_message), (const void*)&remote_m, 
                    0, NULL, lp);
            
            s->gen_data += payload_sz;
827
            s->num_bytes_sent += payload_sz;
828
            s->ross_sample.num_bytes_sent += payload_sz;
829 830
            num_syn_bytes_sent += payload_sz; 
        }
831
    }
832
    s->num_sends++;
833
    s->ross_sample.num_sends++;
834

835
    /* New event after MEAN_INTERVAL */  
836
    tw_stime ts = mean_interval  + tw_rand_exponential(lp->rng, noise); 
837 838 839
    tw_event * e;
    nw_message * m_new;
    e = tw_event_new(lp->gid, ts, lp);
840
    m_new = (struct nw_message*)tw_event_data(e);
841 842
    m_new->msg_type = CLI_BCKGND_GEN;
    tw_event_send(e);
843
    
844 845 846 847 848
    if(num_qos_levels > 1) { //instead of using notify neighbor with QoS, ranks constantly check to see if they have exceeded the hard limit on data - if they have, then they're finished.
        if(s->gen_data >= max_gen_data) {
            bf->c5 = 1;
            s->is_finished = 1;
        }
849
    }
850 851

    free(dest_svr);
852 853 854 855
}

void arrive_syn_tr_rc(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
856 857 858
    (void)bf;
    (void)m;
    (void)lp;
859
//    printf("\n Data arrived %d total data %ld ", m->fwd.num_bytes, s->syn_data);
860
    s->num_recvs--;
861
    s->ross_sample.num_recvs--;
862 863 864
    int data = m->fwd.num_bytes;
    s->syn_data -= data;
    num_syn_bytes_recvd -= data;
865
    s->num_bytes_recvd -= data;
866
    s->ross_sample.num_bytes_recvd -= data;
867
    s->send_time = m->rc.saved_send_time;
868
    s->ross_sample.send_time = m->rc.saved_send_time_sample;
869 870 871 872 873
    if((tw_now(lp) - m->fwd.sim_start_time) > s->max_time)
    {
        s->max_time = m->rc.saved_prev_max_time;
        s->ross_sample.max_time = m->rc.saved_prev_max_time;
    }
874 875 876
}
void arrive_syn_tr(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
877 878 879
    (void)bf;
    (void)lp;

880
//    printf("\n Data arrived %d total data %ld ", m->fwd.num_bytes, s->syn_data);
881 882 883 884
    if(s->local_rank == 0)
     {
    	printf("\n Data arrived %lld rank %llu total data %ld ", m->fwd.num_bytes, s->nw_id, s->syn_data);
/*	if(s->syn_data > upper_threshold)
885 886 887 888
    if(s->local_rank == 0)
     {
    	printf("\n Data arrived %lld rank %llu total data %ld ", m->fwd.num_bytes, s->nw_id, s->syn_data);
	if(s->syn_data > upper_threshold)
889 890 891 892 893 894 895
	{ 
        	struct rusage mem_usage;
		int who = RUSAGE_SELF;
		int err = getrusage(who, &mem_usage);
		printf("\n Memory usage %lf gigabytes", ((double)mem_usage.ru_maxrss / (1024.0 * 1024.0)));
		upper_threshold += 1048576;
	}*/
896
	}
897
    m->rc.saved_send_time = s->send_time;
898
    m->rc.saved_send_time_sample = s->ross_sample.send_time;
899
    if((tw_now(lp) - m->fwd.sim_start_time) > s->max_time)
900 901
    {
        m->rc.saved_prev_max_time = s->max_time;
902
        s->max_time = tw_now(lp) - m->fwd.sim_start_time;
903 904
        s->ross_sample.max_time = tw_now(lp) - m->fwd.sim_start_time;
    }
905 906

    s->send_time += (tw_now(lp) - m->fwd.sim_start_time);
907
    s->ross_sample.send_time += (tw_now(lp) - m->fwd.sim_start_time);
908
    s->num_recvs++;
909
    s->ross_sample.num_recvs++;
910 911
    int data = m->fwd.num_bytes;
    s->syn_data += data;
912
    s->num_bytes_recvd += data;
913
    s->ross_sample.num_bytes_recvd += data;
914 915
    num_syn_bytes_recvd += data;
}
916
/* Debugging functions, may generate unused function warning */
917
/*static void print_waiting_reqs(uint32_t * reqs, int count)
918
{
919
    lprintf("\n Waiting reqs: %d count", count);
920 921
    int i;
    for(i = 0; i < count; i++ )
922
        lprintf(" %d ", reqs[i]);
923
}*/
924 925 926 927 928 929 930 931 932 933 934 935
static void print_msgs_queue(struct qlist_head * head, int is_send)
{
    if(is_send)
        printf("\n Send msgs queue: ");
    else
        printf("\n Recv msgs queue: ");

    struct qlist_head * ent = NULL;
    mpi_msgs_queue * current = NULL;
    qlist_for_each(ent, head)
       {
            current = qlist_entry(ent, mpi_msgs_queue, ql);
936
            //printf(" \n Source %d Dest %d bytes %"PRId64" tag %d ", current->source_rank, current->dest_rank, current->num_bytes, current->tag);
937 938
       }
}
939
static void print_completed_queue(tw_lp * lp, struct qlist_head * head)
940
{
941
//    printf("\n Completed queue: ");
942 943
      struct qlist_head * ent = NULL;
      struct completed_requests* current = NULL;
944
      tw_output(lp, "\n");
945 946 947
      qlist_for_each(ent, head)
       {
            current = qlist_entry(ent, completed_requests, ql);
948
            tw_output(lp, " %llu ", current->req_id);
949
       }
950
}
951
static int clear_completed_reqs(nw_state * s,
952
        tw_lp * lp,
953
        unsigned int * reqs, int count)
954
{
955 956 957
    (void)s;
    (void)lp;

958
    int i, matched = 0;
959

960 961 962
    for( i = 0; i < count; i++)
    {
      struct qlist_head * ent = NULL;
963 964 965
      struct completed_requests * current = NULL;
      struct completed_requests * prev = NULL;

966
      int index = 0;
967 968
      qlist_for_each(ent, &s->completed_reqs)
       {
969 970
           if(prev)
           {
971
              rc_stack_push(lp, prev, free, s->matched_reqs);
972 973
              prev = NULL;
           }
974
            
975 976
           current = qlist_entry(ent, completed_requests, ql);
           current->index = index; 
977 978
            if(current->req_id == reqs[i])
            {
979
                ++matched;
980
                qlist_del(&current->ql);
981
                prev = current;
982
            }
983
            ++index;
984
       }
985 986

      if(prev)
987 988 989 990
      {
         rc_stack_push(lp, prev, free, s->matched_reqs);
         prev = NULL;
      }
991
    }
992
    return matched;
993
}
994
static void add_completed_reqs(nw_state * s,
995 996
        tw_lp * lp,
        int count)
997
{
998
    (void)lp;
999
    for(int i = 0; i < count; i++)
1000
    {
1001 1002
       struct completed_requests * req = (struct completed_requests*)rc_stack_pop(s->matched_reqs);
       // turn on only if wait-all unmatched error arises in optimistic mode.
1003
       qlist_add(&req->ql, &s->completed_reqs);
1004
    }//end for
1005
}
1006

1007 1008 1009 1010 1011 1012
/* helper function - maps an MPI rank to an LP id */
static tw_lpid rank_to_lpid(int rank)
{
    return codes_mapping_get_lpid_from_relative(rank, NULL, "nw-lp", NULL, 0);
}

1013
static int notify_posted_wait(nw_state* s,
1014
        tw_bf * bf, nw_message * m, tw_lp * lp,
1015
        unsigned int completed_req)
1016
{
1017 1018
    (void)bf;

1019 1020
    struct pending_waits* wait_elem = s->wait_op;
    int wait_completed = 0;
1021

1022
    m->fwd.wait_completed = 0;
1023

1024 1025
    if(!wait_elem)
        return 0;
1026

1027
    int op_type = wait_elem->op_type;
1028

1029 1030 1031
    if(op_type == CODES_WK_WAIT &&
            (wait_elem->req_ids[0] == completed_req))
    {
1032
            m->fwd.wait_completed = 1;
1033 1034
            wait_completed = 1;
    }
1035 1036
    else if(op_type == CODES_WK_WAITALL
            || op_type == CODES_WK_WAITANY
1037 1038 1039 1040 1041 1042
            || op_type == CODES_WK_WAITSOME)
    {
        int i;
        for(i = 0; i < wait_elem->count; i++)
        {
            if(wait_elem->req_ids[i] == completed_req)
1043
            {
1044
                wait_elem->num_completed++;
1045
                if(wait_elem->num_completed > wait_elem->count)
1046
                    printf("\n Num completed %d count %d LP %llu ",
1047 1048
                            wait_elem->num_completed,
                            wait_elem->count,
1049
                            LLU(lp->gid));
1050 1051
//                if(wait_elem->num_completed > wait_elem->count)
//                    tw_lp_suspend(lp, 1, 0);
1052

1053
                if(wait_elem->num_completed >= wait_elem->count)
1054
                {
1055
                    if(enable_debug)
1056
                        fprintf(workload_log, "\n(%lf) APP ID %d MPI WAITALL COMPLETED AT %llu ", tw_now(lp), s->app_id, LLU(s->nw_id));
1057
                    wait_completed = 1;
1058
                }
1059

1060
                m->fwd.wait_completed = 1;
1061
            }
1062
        }
1063
    }
1064
    return wait_completed;
1065
}
1066

1067
/* reverse handler of MPI wait operation */
1068
static void codes_exec_mpi_wait_rc(nw_state* s, tw_bf * bf, tw_lp* lp, nw_message * m)
1069
{
1070
   if(bf->c1)
1071
    {
1072
        completed_requests * qi = (completed_requests*)rc_stack_pop(s->processed_ops);
1073 1074
        if(m->fwd.found_match == 0)
        {
1075
            qlist_add(&qi->ql, &s->completed_reqs);
1076
        }
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        else
        {
           int index = 1;
           struct qlist_head * ent = NULL;
           qlist_for_each(ent, &s->completed_reqs)
           {
                if(index == m->fwd.found_match)
                {
                    qlist_add(&qi->ql, ent);
                    break;
                }
                index++;
           }
1090
        }
1091
        codes_issue_next_event_rc(lp);
1092
        return;
1093
    }
1094 1095 1096
         struct pending_waits * wait_op = s->wait_op;
         free(wait_op);
         s->wait_op = NULL;
1097
}
1098

1099
/* execute MPI wait operation */
1100
static void codes_exec_mpi_wait(nw_state* s, tw_bf * bf, nw_message * m, tw_lp* lp, struct codes_workload_op * mpi_op)
1101
{
1102
    /* check in the completed receives queue if the request ID has already been completed.*/
1103 1104
                
//    printf("\n Wait posted rank id %d ", s->nw_id);
1105
    assert(!s->wait_op);
1106
    unsigned int req_id = mpi_op->u.wait.req_id;
1107

1108
    struct completed_requests* current = NULL;
1109

1110
    struct qlist_head * ent = NULL;
1111
    int index = 0;
1112 1113 1114 1115 1116
    qlist_for_each(ent, &s->completed_reqs)
    {
        current = qlist_entry(ent, completed_requests, ql);
        if(current->req_id == req_id)
        {
1117
            bf->c1=1;
1118
            qlist_del(&current->ql);
1119
            rc_stack_push(lp, current, free, s->processed_ops);
1120
            codes_issue_next_event(lp);
1121
            m->fwd.found_match = index;
1122
            if(s->nw_id == (tw_lpid)TRACK_LP)
1123 1124 1125
            {
                tw_output(lp, "\n wait matched at post %d ", req_id);
                print_completed_queue(lp, &s->completed_reqs);
1126
            }
1127 1128
            return;
        }
1129
        ++index;
1130
    }
1131

1132 1133 1134 1135 1136
    /*if(s->nw_id == (tw_lpid)TRACK_LP)
    {
        tw_output(lp, "\n wait posted %llu ", req_id);
        print_completed_queue(lp, &s->completed_reqs);
    }*/
1137
    /* If not, add the wait operation in the pending 'waits' list. */
1138
    struct pending_waits* wait_op = (struct pending_waits*)malloc(sizeof(struct pending_waits));
1139 1140 1141
    wait_op->op_type = mpi_op->op_type;
    wait_op->req_ids[0] = req_id;
    wait_op->count = 1;
1142 1143
    wait_op->num_completed = 0;
    wait_op->start_time = tw_now(lp);
1144
    s->wait_op = wait_op;
1145

1146
    return;
1147 1148
}

1149
static void codes_exec_mpi_wait_all_rc(
1150
        nw_state* s,
1151 1152
        tw_bf * bf,
        nw_message * m,
1153
        tw_lp* lp)
1154
{
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
  if(bf->c1)
  {
    int sampling_indx = s->sampling_indx;
    s->mpi_wkld_samples[sampling_indx].num_waits_sample--;

    if(bf->c2)
    {
        s->cur_interval_end -= sampling_interval;
        s->sampling_indx--;
    }
  }
1166 1167 1168 1169 1170 1171 1172 1173
  if(s->wait_op)
  {
      struct pending_waits * wait_op = s->wait_op;
      free(wait_op);
      s->wait_op = NULL;
  }
  else
  {
1174
      add_completed_reqs(s, lp, m->fwd.num_matched);
1175 1176 1177
      codes_issue_next_event_rc(lp);
  }
  return;
1178
}
1179

1180
static void codes_exec_mpi_wait_all(
1181
        nw_state* s,
1182 1183
        tw_bf * bf,
        nw_message * m,
1184
        tw_lp* lp,
1185
        struct codes_workload_op * mpi_op)
1186
{
1187
  if(enable_debug)
1188
    fprintf(workload_log, "\n MPI WAITALL POSTED AT %llu ", LLU(s->nw_id));
1189

1190 1191 1192 1193 1194 1195 1196 1197
  if(enable_sampling)
  {
    bf->c1 = 1;
    if(tw_now(lp) >= s->cur_interval_end)
    {
        bf->c2 = 1;
        int indx = s->sampling_indx;
        s->mpi_wkld_samples[indx].nw_id = s->nw_id;
1198
        s->mpi_wkld_samples[indx].app_id = s->app_id;
1199 1200 1201 1202 1203 1204
        s->mpi_wkld_samples[indx].sample_end_time = s->cur_interval_end;
        s->cur_interval_end += sampling_interval;
        s->sampling_indx++;
    }
    if(s->sampling_indx >= MAX_STATS)
    {
1205
        struct mpi_workload_sample * tmp = (struct mpi_workload_sample*)calloc((MAX_STATS + s->max_arr_size), sizeof(struct mpi_workload_sample));
1206 1207 1208 1209 1210 1211 1212 1213
        memcpy(tmp, s->mpi_wkld_samples, s->sampling_indx);
        free(s->mpi_wkld_samples);
        s->mpi_wkld_samples = tmp;
        s->max_arr_size += MAX_STATS;
    }
    int indx = s->sampling_indx;
    s->mpi_wkld_samples[indx].num_waits_sample++;
  }
1214
  int count = mpi_op->u.waits.count;
1215 1216
  /* If the count is not less than max wait reqs then stop */
  assert(count < MAX_WAIT_REQS);
1217

1218
  int i = 0, num_matched = 0;
1219
  m->fwd.num_matched = 0;
1220

1221
  /*if(lp->gid == TRACK_LP)
1222
  {
1223
      printf("\n MPI Wait all posted ");
1224
      print_waiting_reqs(mpi_op->u.waits.req_ids, count);
1225 1226
      print_completed_queue(lp, &s->completed_reqs);
  }*/
1227
      /* check number of completed irecvs in the completion queue */
1228 1229
  for(i = 0; i < count; i++)
  {
1230
      unsigned int req_id = mpi_op->u.waits.req_ids[i];
1231 1232 1233 1234
      struct qlist_head * ent = NULL;
      struct completed_requests* current = NULL;
      qlist_for_each(ent, &s->completed_reqs)
       {
1235
            current = qlist_entry(ent, struct completed_requests, ql);
1236 1237 1238 12