dragonfly.c 67.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12 13
#include <ross.h>

#include "codes/codes_mapping.h"
14
#include "codes/jenkins-hash.h"
15 16 17
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20 21 22 23

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

24 25 26
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
27
#define DRAGONFLY_COLLECTIVE_DEBUG 0
28 29 30
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
31
#define WINDOW_LENGTH 0
32

33
// debugging parameters
34
#define TRACK -1
35
#define PRINT_ROUTER_TABLE 1
36
#define DEBUG 0
37

38 39 40
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

41 42
static double maxd(double a, double b) { return a < b ? b : a; }

43 44
// arrival rate
static double MEAN_INTERVAL=200.0;
45 46
// threshold for adaptive routing
static int adaptive_threshold = 10;
47 48

/* minimal and non-minimal packet counts for adaptive routing*/
49
unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
50

51 52 53 54 55 56
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
57 58

/* global variables for codes mapping */
59
static char lp_group_name[MAX_NAME_LENGTH];
60 61
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

62 63 64 65 66 67 68 69
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

/* number of routers in a mapping group */
static int num_routers_per_mgrp = 0;
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/

    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
89
    int total_terminals;
90 91 92
    int num_global_channels;
};

93 94 95 96 97 98 99 100 101 102 103 104
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
105 106
   tw_lpid router_id;
   tw_lpid terminal_id;
107 108 109 110 111 112 113 114 115 116

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
141 142 143

   const char * anno;
   const dragonfly_param *params;
144
};
145

146 147 148 149 150 151 152 153 154
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
155 156 157 158
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
182 183
    MINIMAL = 0,
    NON_MINIMAL,
184 185
    ADAPTIVE,
    PROG_ADAPTIVE
186 187 188 189 190 191 192 193
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
194
   
195 196
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
197 198
   tw_stime* cur_hist_start_time;
   
199 200
   int* vc_occupancy;
   int* output_vc_state;
201 202 203

   const char * anno;
   const dragonfly_param *params;
204 205 206

   int* prev_hist_num;
   int* cur_hist_num;
207 208 209 210 211 212
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
213
static tw_stime         max_collective = 0;
214 215 216 217 218 219 220 221 222 223 224 225 226 227


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}

228 229 230
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
231

232 233 234 235 236 237 238 239 240 241
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

    configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
            &p->num_vcs);
242
    if(!p->num_vcs) {
243 244 245 246 247
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
    }

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
248
    if(p->local_vc_size <= 0) {
249 250 251 252 253
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
254
    if(p->global_vc_size <= 0) {
255 256 257 258 259
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
260
    if(p->cn_vc_size <= 0) {
261 262 263 264 265
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
266
    if(p->chunk_size <= 0) {
267
        p->chunk_size = 64;
268
        fprintf(stderr, "Chunk size for packets is not specified, setting to %d\n", p->chunk_size);
269 270 271
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
272
    if(p->local_bandwidth <= 0) {
273 274 275 276 277
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
278
    if(p->global_bandwidth <= 0) {
279 280 281 282 283
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
284
    if(p->cn_bandwidth <= 0) {
285 286 287 288 289
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }


290 291
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
292
            MAX_NAME_LENGTH);
293 294 295 296 297 298 299 300
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
    else if(strcmp(routing_str, "nonminimal")==0 || strcmp(routing_str,"non-minimal")==0)
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
301 302 303 304
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
305
        routing = -1;
306 307 308 309 310 311 312 313 314
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
    p->radix = p->num_vcs *
        (p->num_cn + p->num_global_channels + p->num_routers);
    p->total_routers = p->num_groups * p->num_routers;
315
    p->total_terminals = p->total_routers * p->num_cn;
316
    printf("\n Total nodes %d routers %d groups %d radix %d num_vc %d ", p->num_cn * p->total_routers,
317 318
								p->total_routers,
								p->num_groups,
319 320
								p->radix,
                                                                p->num_vcs);
321 322 323 324 325 326
}

static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
327
    all_params = calloc(num_params, sizeof(*all_params));
328 329 330 331 332 333 334 335

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i];
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
336 337 338 339 340 341 342
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
343
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
344 345 346 347 348

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
349
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
350 351 352
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
353
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
354
    }
355 356 357

   /* print statistics */
   if(!g_tw_mynode)
358
   {	
359
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
360
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
361
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
362 363
 
  }
364 365
   return;
}
366

367 368 369
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
370 371 372 373 374
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

425
/* dragonfly packet event , generates a dragonfly packet on the compute node */
426
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, const mn_sched_params *sched_params, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
427 428 429 430 431 432
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

433
    xfer_to_nic_time = codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
434 435
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
436 437 438
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
439 440
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
441
    msg->sender_lp=src_lp;
442 443 444 445
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
446
    msg->magic = terminal_magic_num;
447 448
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
465
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
466
    tw_event_send(e_new);
467
    return xfer_to_nic_time;
468 469 470 471 472 473 474 475 476
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

477 478 479 480
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
		    int num_routers)
481
{
482 483 484
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
485
  
486 487
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
488
  
489 490
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
491
  
492
  offset=(offset - 1) % (half_channel * num_routers);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
513
  int is_terminal = 0;
514
  int found_magic = router_magic_num;
515

516
  const dragonfly_param *p = s->params;
517
  int sender_radix;
518 519 520 521
 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
522
   sender_radix = msg->local_id % p->num_cn;  
523
   //determine the time in ns to transfer the credit
524
   credit_delay = (1 / p->cn_bandwidth) * CREDIT_SIZE;
525
   type = T_BUFFER;
526
   is_terminal = 1;
527
   found_magic = terminal_magic_num;
528 529 530 531
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
532
     sender_radix = p->num_cn + (msg->local_id % p->num_global_channels);
533
     credit_delay = (1 / p->global_bandwidth) * CREDIT_SIZE;
534 535 536 537
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
538
        sender_radix = p->num_cn + p->num_global_channels + (msg->local_id % p->num_routers);
539
     	credit_delay = (1/p->local_bandwidth) * CREDIT_SIZE;
540 541 542 543 544
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
545
    assert(sender_radix < s->params->radix );
546
    int output_port = msg->saved_vc / p->num_vcs;
547 548 549

    msg->saved_available_time = s->next_credit_available_time[sender_radix];
    s->next_credit_available_time[sender_radix] = maxd(tw_now(lp), s->next_credit_available_time[output_port]);
550
    ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
551
	
552
    s->next_credit_available_time[sender_radix]+=ts;
553 554
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
555
                s->next_credit_available_time[sender_radix] - tw_now(lp), lp,
556 557 558
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
559
        buf_e = tw_event_new(dest, s->next_credit_available_time[sender_radix] - tw_now(lp) , lp);
560 561
        buf_msg = tw_event_data(buf_e);
    }
562 563
    //if(dest == TRACK)
//	printf("\n LP %d sending credit back to dest %d at channel %d last hop %d ", lp->gid, dest, msg->saved_vc, msg->last_hop);
564
    buf_msg->origin_router_id = s->router_id;
565 566
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
567
    buf_msg->magic = found_magic;
568 569 570 571 572 573 574 575 576 577 578
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
579
    tw_lpid dest_terminal_id;
580 581
    dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
            msg->final_dest_gid);
582 583 584 585
    msg->dest_terminal_id = dest_terminal_id;

    const dragonfly_param *p = s->params;

586 587 588
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
589
  int i, total_event_size;
590 591 592
  uint64_t num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
      num_chunks++;
593 594
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
595
  msg->my_N_hop = 0;
596 597
  for(i = 0; i < num_chunks; i++)
  {
598 599
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
600
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
601
	int chan = -1, j;
602
	for(j = 0; j < p->num_vcs; j++)
603
	 {
604
	     if(s->vc_occupancy[j] < p->cn_vc_size * num_chunks)
605 606 607 608 609 610
	      {
	       chan=j;
	       break;
	      }
         }

611 612 613 614 615
        // this is a terminal event, so use the method-event version
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
616
       m->dest_terminal_id = dest_terminal_id;
617 618 619 620 621 622 623 624 625
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
626 627 628
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
629 630
       m->magic = terminal_magic_num;
 
631
      /* if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
632
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
633
       */
634 635 636 637 638 639 640 641 642 643 644 645 646 647
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
648 649
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
650 651 652 653
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
654
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
655 656
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
673
   double head_delay = (1/s->params->cn_bandwidth) * s->params->chunk_size;
674
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
675
   s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
676 677
   s->terminal_available_time += ts;

678 679 680
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
681
   
682
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
683 684
           s->router_id/num_routers_per_mgrp, s->router_id % num_routers_per_mgrp, &router_id);

685
   // we are sending an event to the router, so no method_event here
686 687
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

688 689 690 691
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;

692 693
   //if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
   //  printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
694
   m = tw_event_data(e);
695 696 697 698 699
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
700
   m->magic = router_magic_num;
701
   m->origin_router_id = s->router_id;
702 703 704 705 706
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
707
   m->path_type = -1;
708
   m->local_event_size_bytes = 0;
709
   m->local_id = s->terminal_id;
710 711 712 713
   tw_event_send(e);

   if(msg->chunk_id == num_chunks - 1) 
    {
714 715 716
      // now that message is sent, issue an "idle" event to tell the scheduler
      // when I'm next available
      model_net_method_idle_event(codes_local_latency(lp) +
717
              s->terminal_available_time - tw_now(lp), 0, lp);
718

719 720 721 722 723
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
724 725 726
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
727
	   ts = g_tw_lookahead + (1/s->params->cn_bandwidth) * msg->local_event_size_bytes;
728
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
729 730 731 732 733 734 735 736 737
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

738
   if(s->vc_occupancy[vc] >= (s->params->cn_vc_size * num_chunks))
739 740 741 742 743 744 745
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
746 747 748
    uint64_t num_chunks = msg->packet_size / s->params->chunk_size;
    if (msg->packet_size % s->params->chunk_size)
        num_chunks++;
749 750 751 752 753 754 755 756

    completed_packets++;

    if(msg->path_type == MINIMAL)
	minimal_count++;

    if(msg->path_type == NON_MINIMAL)
	nonmin_count++;
757 758 759
    
    if(msg->path_type != MINIMAL && msg->path_type != NON_MINIMAL)
	printf("\n Wrong message path type %d ", msg->path_type);
760
#if DEBUG == 1
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
785 786 787 788 789
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

790 791 792 793 794 795 796 797 798 799 800 801 802
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
803
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
804
            ts = g_tw_lookahead + 0.1 + (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
805
            if (msg->is_pull){
806
                int net_id = model_net_get_id(LP_METHOD_NM);
807 808 809 810 811 812 813 814 815 816
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
817 818 819
	}
  }

820
  int credit_delay = (1 / s->params->cn_bandwidth) * CREDIT_SIZE;
821
  ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, credit_delay/1000);
822
  
823
  msg->saved_credit_time = s->next_credit_available_time;
824
  s->next_credit_available_time = maxd(s->next_credit_available_time, tw_now(lp));
825 826
  s->next_credit_available_time += ts;

827 828
  if(msg->intm_lp_id == TRACK)
	printf("\n terminal sending credit at chan %d ", msg->saved_vc);
829
  //TODO: be annotation-aware
830
  // no method_event here - message going to router
831
  buf_e = tw_event_new(msg->intm_lp_id, s->next_credit_available_time - tw_now(lp), lp);
832
  buf_msg = tw_event_data(buf_e);
833
  buf_msg->magic = router_magic_num;
834 835 836 837 838 839 840 841 842 843 844 845 846 847
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
848 849 850 851
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
852
    int i;
853 854
    char anno[MAX_NAME_LENGTH];

855
    // Assign the global router ID
856
    // TODO: be annotation-aware
857 858 859 860 861 862 863
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
864
        s->anno = strdup(anno);
865 866 867 868
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

869
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
870
           s->anno, 0);
871 872

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
873
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
874 875 876
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

877 878
   s->vc_occupancy = (int*)malloc(s->params->num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(s->params->num_vcs * sizeof(int));
879

880
   for( i = 0; i < s->params->num_vcs; i++ )
881 882 883 884
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
885
//   printf("\n Terminal ID %d Router ID %d ", s->terminal_id, s->router_id);
886
   dragonfly_collective_init(s, lp);
887 888 889
   return;
}

890
/* collective operation for the torus network */
891
void dragonfly_collective(char const * category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
892 893 894 895 896 897 898
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

899 900 901 902
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
903

904
    xfer_to_nic_time = codes_local_latency(sender);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
944
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
973 974 975 976 977
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
978 979
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
980 981
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

1012 1013 1014
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1015
                s->anno, 0);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
1034
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
1035 1036
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
1073 1074 1075
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
                        s->children[i]/num_lps, (s->children[i] % num_lps),
                        &child_nic_id);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
1086
	                memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
1104 1105
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
                NULL, 1);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
1127
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM,
1128
                                s->anno, 0, s->children[i]/num_lps,
1129
                                (s->children[i] % num_lps), &child_nic_id);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
1168
    assert(s->vc_occupancy[msg_indx] >= 0);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
1180
  assert(msg->magic == terminal_magic_num);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
1199 1200 1201 1202
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1203

1204 1205 1206 1207 1208 1209 1210 1211
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1212 1213 1214 1215 1216 1217
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1218
dragonfly_terminal_final( terminal_state * s, 
1219 1220
      tw_lp * lp )
{
1221
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1222 1223
}

1224 1225 1226 1227 1228
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263

/* Get the number of hops for this particular path source and destination groups */
int get_num_hops(int local_router_id,
		 int dest_router_id,
		 int num_routers,
		 int non_min)
{
   int local_grp_id = local_router_id / num_routers;
   int dest_group_id = dest_router_id / num_routers;
   int num_hops = 4;

   /* Already at the destination router */
   if(local_router_id == dest_router_id)
    {
	return 1; /* already at the destination, traverse one hop only*/
    }
   else if(local_grp_id == dest_group_id)
    {
		return 2; /* in the same group, each router is connected so 2 additional hops to traverse (source and dest routers). */		
    }	

     /* if the router in the source group has direct connection to the destination group */
     tw_lpid src_connecting_router = getRouterFromGroupID(dest_group_id, local_grp_id, num_routers);

     if(src_connecting_router == local_router_id)		
		num_hops--;

     tw_lpid dest_connecting_router = getRouterFromGroupID(local_grp_id, dest_group_id, num_routers);	

     if(dest_connecting_router == dest_router_id)	
			num_hops--;

     return num_hops;
}

1264 1265 1266 1267 1268 1269 1270 1271
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
1272 1273 1274
		      int path,
		      int dest_router_id,
		      int intm_id)
1275 1276
{
   int dest_lp;
1277
   tw_lpid router_dest_id = -1;
1278 1279 1280
   int i;
   int dest_group_id;

1281 1282
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1283
   int local_router_id = mapping_offset + (mapping_rep_id * num_routers_per_mgrp);
1284 1285 1286

   bf->c2 = 0;

1287
  /* If the packet has arrived at the destination router */
1288 1289 1290 1291 1292
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;
        return dest_lp;
    }
1293
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1294
   if(msg->last_hop == TERMINAL && path == NON_MINIMAL)
1295
    {
1296
      if(dest_router_id / s->params->num_routers != s->group_id)
1297 1298
         {
            bf->c2 = 1;
1299
	    msg->intm_group_id = intm_id;
1300 1301
          }    
    }
1302
   /******************** DECIDE THE DESTINATION GROUP ***********************/
1303
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1304
   if(path == NON_MINIMAL && msg->intm_group_id == s->group_id)
1305 1306 1307
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1308
  /* Intermediate group ID is set. Divert the packet to the intermediate group. */
1309
  if(path == NON_MINIMAL && msg->intm_group_id >= 0)
1310 1311 1312
   {
      dest_group_id = msg->intm_group_id;
   }
1313
  else /* direct the packet to the destination group */
1314
   {
1315
     dest_group_id = dest_router_id / s->params->num_routers;
1316
   }
1317 1318
 
/********************** DECIDE THE ROUTER IN THE DESTINATION GROUP ***************/ 
1319
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1320 1321 1322 1323 1324 1325
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1326
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1327
      dest_lp=getRouterFromGroupID(dest_group_id,s->router_id/s->params->num_routers, s->params->num_routers);
1328 1329 1330
  
      if(dest_lp == local_router_id)
      {
1331
        for(i=0; i < s->params->num_global_channels; i++)
1332
           {
1333
            if(s->global_channel[i] / s->params->num_routers == dest_group_id)
1334 1335 1336 1337
                dest_lp=s->global_channel[i];
          }
      }
   }
1338 1339
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0, dest_lp/num_routers_per_mgrp,
          dest_lp % num_routers_per_mgrp, &router_dest_id);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
  return router_dest_id;
}
/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
1351 1352 1353
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
          &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
          &mapping_offset);
1354
  int num_lps = codes_mapping_get_lp_count(lp_group_name,1,LP_CONFIG_NM,s->anno,0);
1355
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1356 1357 1358

  if(next_stop == msg->dest_terminal_id)
   {
1359 1360
      output_port = s->params->num_routers + s->params->num_global_channels +
          ( terminal_id % s->params->num_cn);
1361 1362 1363
    }
    else
    {
1364 1365
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id,
             NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1366
     int local_router_id = mapping_rep_id * num_routers_per_mgrp + mapping_offset;
1367
     int intm_grp_id = local_router_id / s->params->num_routers;
1368 1369 1370

     if(intm_grp_id != s->group_id)
      {
1371
        for(i=0; i < s->params->num_global_channels; i++)
1372
         {
1373
           if(s->global_channel[i] == local_router_id)
1374
             output_port = s->params->num_routers + i;
1375 1376 1377 1378
          }
      }
      else
       {
1379
        output_port = local_router_id % s->params->num_routers;
1380
       }
1381
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1382 1383 1384 1385 1386
    }
    return output_port;
}


1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/* UGAL (first condition is from booksim), output port equality check comes from Dally dragonfly'09*/
static int do_adaptive_routing( router_state * s,
				 tw_bf * bf,
				 terminal_message * msg,
				 tw_lp * lp,
				 int dest_router_id,
				 int intm_id)
{
    int next_stop;
    int minimal_out_port = -1, nonmin_out_port = -1;
     // decide which routing to take
    // get the queue occupancy of both the minimal and non-minimal output ports 
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL, dest_router_id, -1);
1400
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
1401
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL, dest_router_id, intm_id);
1402 1403 1404
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
1405 1406
    //int nonmin_vc = s->vc_occupancy[nonmin_out_port * s->params->num_vcs + 2];
    //int min_vc = s->vc_occupancy[minimal_out_port * s->params->num_vcs + 1];
1407

1408
//    printf("\n min output port %d nonmin output port %d ", minimal_next_stop, nonmin_next_stop);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    // Now get the expected number of hops to be traversed for both routes 
    int dest_group_id = dest_router_id / s->params->num_routers;
    int num_min_hops = get_num_hops(s->router_id, dest_router_id, s->params->num_routers, 0);

    int intm_router_id = getRouterFromGroupID(intm_id, s->router_id / s->params->num_routers, s->params->num_routers);

    //printf("\n source %d Intm router id is %d dest router id %d ", s->router_id, intm_router_id, dest_router_id);
    int num_nonmin_hops = get_num_hops(s->router_id, intm_router_id, s->params->num_routers, 1) + get_num_hops(intm_router_id, dest_router_id, s->params->num_routers, 1);

    assert(num_nonmin_hops <= 6);

1420 1421 1422 1423 1424 1425 1426 1427 1428
   /* average the local queues of the router */
   unsigned int q_avg = 0;
   int i;
   for( i = 0; i < s->params->radix; i++)
    {
	if( i != minimal_out_port)
		q_avg += s->vc_occupancy[i]; 
   }
   q_avg = q_avg / (s->params->radix - 1);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

   int min_out_chan = minimal_out_port * s->params->num_vcs;
   int nonmin_out_chan = nonmin_out_port * s->params->num_vcs;

   /* Adding history window approach, not taking the queue status at every simulation time thats why, we are maintaining the current history window number and an average of the previous history window number. */
   int min_hist_count = s->cur_hist_num[min_out_chan] + (s->prev_hist_num[min_out_chan]/2);
   int nonmin_hist_count = s->cur_hist_num[nonmin_out_chan] + (s->prev_hist_num[min_out_chan]/2);

   /*printf("\n min hist count %d chan %d nonmin hist count %d %d ", min_hist_count, 
								min_out_chan,
							nonmin_hist_count,
							nonmin_out_chan);
 */ 
  if(num_min_hops * (min_port_count - min_hist_count) <= (num_nonmin_hops * ((q_avg + 1) - nonmin_hist_count)))
1443
     {
1444
	   msg->path_type = MINIMAL;
1445 1446
           next_stop = minimal_next_stop;
           msg->intm_group_id = -1;
1447

1448 1449 1450 1451 1452
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
1453
	   msg->path_type = NON_MINIMAL;
1454
           next_stop = nonmin_next_stop;
1455 1456
    	   msg->intm_group_id = intm_id;

1457 1458 1459 1460
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

         }
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
   return next_stop;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
/*
   if(lp->gid == TRACK)
   {
	printf("\n Router %d ", s->router_id);
	int i;
	for (i = 0; i < s->params->radix; i++)
		printf("\n vc occupancy %d ", s->vc_occupancy[i]);
   }
*/
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
   float bandwidth = s->params->local_bandwidth;
   bf->c3 = 0;

   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
    
   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
           &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
           &mapping_offset); 
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / s->params->num_routers;
   int intm_id = tw_rand_integer(lp->rng, 0, s->params->num_groups - 1);  
   int local_grp_id = s->router_id / s->params->num_routers;
   if(intm_id == local_grp_id) 
	intm_id = (local_grp_id + 2) % s->params->num_groups;

/* progressive adaptive routing makes a check at every node/router at the source group to sense congestion. Once it does and decides on taking non-minimal path, it does not check any longer. */
1503
//   printf("\n local grp id %d origin router id %d ", local_grp_id, msg->origin_router_id / s->params->num_routers);
1504 1505 1506
   if(routing == PROG_ADAPTIVE
	 && msg->path_type != NON_MINIMAL
	 && local_grp_id == ( msg->origin_router_id / s->params->num_routers))
1507 1508 1509
	{
		next_stop = do_adaptive_routing(s, bf, msg, lp, dest_router_id, intm_id);	
	}
1510
   else if(msg->last_hop == TERMINAL && routing == ADAPTIVE)
1511 1512 1513
	{
		next_stop = do_adaptive_routing(s, bf, msg, lp, dest_router_id, intm_id);
	}
1514 1515
  else
   {
1516 1517 1518 1519
	if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
		assert(msg->path_type == MINIMAL || msg->path_type == NON_MINIMAL);

	if(routing == MINIMAL || routing == NON_MINIMAL)	
1520
		msg->path_type = routing; /*defaults to the routing algorithm if we don't have adaptive routing here*/
1521
   	next_stop = get_next_stop(s, bf, msg, lp, msg->path_type, dest_router_id, intm_id);
1522
   }
1523
   output_port = get_output_port(s, bf, msg, lp, next_stop); 
1524
   output_chan = output_port * s->params->num_vcs;
1525
   int global=0;
1526
   int buf_size = s->params->local_vc_size;
1527

1528
   assert(output_port != -1 && output_chan != -1 && output_port < s->params->radix);
1529
   // Allocate output Virtual Channel
Jonathan Jenkins's avatar <