example.c 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

/* SUMMARY:
 *
 * This is a sample code to demonstrate CODES usage and best practices.  It
 * sets up a number of servers, each of which is paired up with a simplenet LP
 * to serve as the NIC.  Each server exchanges a sequence of requests and acks
 * with one peer and measures the throughput in terms of payload bytes (ack
 * size) moved per second.
 */

#include <string.h>
#include <assert.h>
#include <ross.h>

#include "codes/lp-io.h"
#include "codes/codes.h"
#include "codes/codes_mapping.h"
#include "codes/configuration.h"
#include "codes/model-net.h"
#include "codes/lp-type-lookup.h"
26
#include "codes/local-storage-model.h"
27

28 29
static int num_reqs = 0;/* number of requests sent by each server (read from config) */
static int payload_sz = 0; /* size of simulated data payload, bytes (read from config) */
30

31 32
/* model-net ID, can be either simple-net, dragonfly or torus (more may be
 * added) */
33 34 35 36
static int net_id = 0;
static int num_servers = 0;
static int offset = 2;

37
/* expected LP group name in configure files for this program */
38
static char *group_name = "SERVERS";
39 40 41 42
/* expected parameter group name for rounds of communication */
static char *param_group_nm = "server_pings";
static char *num_reqs_key = "num_reqs";
static char *payload_sz_key = "payload_sz";
43

44 45 46
typedef struct svr_msg svr_msg;
typedef struct svr_state svr_state;

47
/* types of events that will constitute server activities */
48 49 50 51 52 53 54 55
enum svr_event
{
    KICKOFF,    /* initial event */
    REQ,        /* request event */
    ACK,        /* ack event */
    LOCAL      /* local event */
};

56
/* this struct serves as the ***persistent*** state of the LP representing the
57 58
 * server in question. This struct is setup when the LP initialization function
 * ptr is called */
59 60 61 62 63 64
struct svr_state
{
    int msg_sent_count;   /* requests sent */
    int msg_recvd_count;  /* requests recvd */
    int local_recvd_count; /* number of local messages received */
    tw_stime start_ts;    /* time that we started sending requests */
65
    tw_stime end_ts;      /* time that last request finished */
66 67
};

68 69
/* this struct serves as the ***temporary*** event data, which can be thought
 * of as a message between two LPs. */
70 71 72 73 74
struct svr_msg
{
    enum svr_event svr_event_type;
    tw_lpid src;          /* source of this request or ack */

75 76
    model_net_event_return ret; /* model net reverse computation var */

77 78 79
    int incremented_flag; /* helper for reverse computation */
};

80 81 82 83 84 85
/* ROSS expects four functions per LP:
 * - an LP initialization function, called for each LP
 * - an event processing function
 * - a *reverse* event processing function (rollback), and
 * - a finalization/cleanup function when the simulation ends
 */
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
static void svr_init(
    svr_state * ns,
    tw_lp * lp);
static void svr_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void svr_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void svr_finalize(
    svr_state * ns,
    tw_lp * lp);

103 104
/* set up the function pointers for ROSS, as well as the size of the LP state
 * structure (NOTE: ROSS is in charge of event and state (de-)allocation) */
105
tw_lptype svr_lp = {
106 107 108 109
    (init_f) svr_init,
    (pre_run_f) NULL,
    (event_f) svr_event,
    (revent_f) svr_rev_event,
110 111
    (commit_f) NULL,
    (final_f)  svr_finalize,
112 113
    (map_f) codes_mapping,
    sizeof(svr_state),
114 115 116 117 118 119
};

extern const tw_lptype* svr_get_lp_type();
static void svr_add_lp_type();
static tw_stime ns_to_s(tw_stime ns);
static tw_stime s_to_ns(tw_stime ns);
120 121 122

/* as we only have a single event processing entry point and multiple event
 * types, for clarity we define "handlers" for each (reverse) event type */
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static void handle_kickoff_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void handle_ack_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void handle_req_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void handle_local_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
   tw_lp * lp);
static void handle_local_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
   tw_lp * lp);
static void handle_kickoff_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void handle_ack_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);
static void handle_req_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp);

164 165 166 167 168 169 170 171 172 173 174 175
/* for this simulation, each server contacts its neighboring server in an id.
 * this function shows how to use the codes_mapping API to calculate IDs when
 * having to contend with multiple LP types and counts. Note that in this simple
 * example codes_mapping is overkill. */
static tw_lpid get_next_server(tw_lpid sender_id);

/* arguments to be handled by ROSS - strings passed in are expected to be
 * pre-allocated */
static char conf_file_name[256] = {0};
/* this struct contains default parameters used by ROSS, as well as
 * user-specific arguments to be handled by the ROSS config sys. Pass it in
 * prior to calling tw_init */
176 177 178
const tw_optdef app_opt [] =
{
	TWOPT_GROUP("Model net test case" ),
179
        TWOPT_CHAR("codes-config", conf_file_name, "name of codes configuration file"),
180 181 182 183 184 185 186 187 188
	TWOPT_END()
};

int main(
    int argc,
    char **argv)
{
    int nprocs;
    int rank;
189
    int num_nets, *net_ids;
190 191

    /* TODO: explain why we need this (ROSS has cutoff??) */
192 193 194
    g_tw_ts_end = s_to_ns(60*60*24*365); /* one year, in nsecs */

    /* ROSS initialization function calls */
195 196
    tw_opt_add(app_opt); /* add user-defined args */
    /* initialize ROSS and parse args. NOTE: tw_init calls MPI_Init */
197
    tw_init(&argc, &argv);
198

199
    if (!conf_file_name[0])
200
    {
201 202 203
        fprintf(stderr, "Expected \"codes-config\" option, please see --help.\n");
        MPI_Finalize();
        return 1;
204
    }
205

206 207
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
208

209
    /* loading the config file into the codes-mapping utility, giving us the
210
     * parsed config object in return.
211 212 213 214 215 216
     * "config" is a global var defined by codes-mapping */
    if (configuration_load(conf_file_name, MPI_COMM_WORLD, &config)){
        fprintf(stderr, "Error loading config file %s.\n", conf_file_name);
        MPI_Finalize();
        return 1;
    }
217

218 219 220 221 222 223 224 225
    /* register model-net LPs with ROSS */
    model_net_register();

    /* register the server LP type with ROSS */
    svr_add_lp_type();

    /* Setup takes the global config object, the registered LPs, and
     * generates/places the LPs as specified in the configuration file.
226
     * This should only be called after ALL LP types have been registered in
227 228 229
     * codes */
    codes_mapping_setup();

230
    /* Setup the model-net parameters specified in the global config object,
231 232
     * returned are the identifier(s) for the network type. In this example, we
     * only expect one*/
233
    net_ids = model_net_configure(&num_nets);
234 235 236
    assert(num_nets==1);
    net_id = *net_ids;
    free(net_ids);
237
    /* in this example, we are using simplenet, which simulates point to point
238 239
     * communication between any two entities (other networks are trickier to
     * setup). Hence: */
240 241 242 243 244 245
    if(net_id != SIMPLENET)
    {
	    printf("\n The test works with simple-net configuration only! ");
	    MPI_Finalize();
	    return 0;
    }
246

247 248 249
    /* calculate the number of servers in this simulation,
     * ignoring annotations */
    num_servers = codes_mapping_get_lp_count(group_name, 0, "server", NULL, 1);
250

251 252 253
    /* for this example, we read from a separate configuration group for
     * server message parameters. Since they are constant for all LPs,
     * go ahead and read them prior to running */
254 255
    configuration_get_value_int(&config, param_group_nm, num_reqs_key, NULL, &num_reqs);
    configuration_get_value_int(&config, param_group_nm, payload_sz_key, NULL, &payload_sz);
256

257
    /* begin simulation */
258
    tw_run();
259 260

    /* model-net has the capability of outputting network transmission stats */
261 262 263 264 265 266 267 268 269 270 271 272 273
    model_net_report_stats(net_id);

    tw_end();
    return 0;
}

const tw_lptype* svr_get_lp_type()
{
	    return(&svr_lp);
}

static void svr_add_lp_type()
{
274
    /* lp_type_register should be called exactly once per process per
275 276
     * LP type */
    lp_type_register("server", svr_get_lp_type());
277 278 279 280 281 282 283 284 285
}

static void svr_init(
    svr_state * ns,
    tw_lp * lp)
{
    tw_event *e;
    svr_msg *m;
    tw_stime kickoff_time;
286

287 288 289 290 291 292 293
    memset(ns, 0, sizeof(*ns));

    /* each server sends a dummy event to itself that will kick off the real
     * simulation
     */

    /* skew each kickoff event slightly to help avoid event ties later on */
294
    kickoff_time = g_tw_lookahead + tw_rand_unif(lp->rng);
295

296
    /* first create the event (time arg is an offset, not absolute time) */
297
    e = tw_event_new(lp->gid, kickoff_time, lp);
298
    /* after event is created, grab the allocated message and set msg-specific
299
     * data */
300 301
    m = tw_event_data(e);
    m->svr_event_type = KICKOFF;
302
    /* event is ready to be processed, send it off */
303 304 305 306 307
    tw_event_send(e);

    return;
}

308 309
/* event processing entry point
 * - simply forward the message to the appropriate handler */
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void svr_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
   switch (m->svr_event_type)
    {
        case REQ:
            handle_req_event(ns, b, m, lp);
            break;
        case ACK:
            handle_ack_event(ns, b, m, lp);
            break;
        case KICKOFF:
            handle_kickoff_event(ns, b, m, lp);
            break;
	case LOCAL:
328
	   handle_local_event(ns, b, m, lp);
329 330 331 332 333 334 335 336
	 break;
        default:
	    printf("\n Invalid message type %d ", m->svr_event_type);
            assert(0);
        break;
    }
}

337 338
/* reverse event processing entry point
 * - simply forward the message to the appropriate handler */
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static void svr_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
    switch (m->svr_event_type)
    {
        case REQ:
            handle_req_rev_event(ns, b, m, lp);
            break;
        case ACK:
            handle_ack_rev_event(ns, b, m, lp);
            break;
        case KICKOFF:
            handle_kickoff_rev_event(ns, b, m, lp);
            break;
	case LOCAL:
357
	    handle_local_rev_event(ns, b, m, lp);
358 359 360 361 362 363 364 365 366
	    break;
        default:
            assert(0);
            break;
    }

    return;
}

367
/* once the simulation is over, do some output */
368 369 370 371
static void svr_finalize(
    svr_state * ns,
    tw_lp * lp)
{
372
    printf("server %llu recvd %d bytes in %lf seconds, %lf MiB/s sent_count %d recvd_count %d local_count %d \n",
373 374 375 376 377 378 379
            (unsigned long long)(lp->gid/2),
            payload_sz*ns->msg_recvd_count,
            ns_to_s(ns->end_ts-ns->start_ts),
            ((double)(payload_sz*num_reqs)/(double)(1024*1024)/ns_to_s(ns->end_ts-ns->start_ts)),
            ns->msg_sent_count,
            ns->msg_recvd_count,
            ns->local_recvd_count);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    return;
}

/* convert ns to seconds */
static tw_stime ns_to_s(tw_stime ns)
{
    return(ns / (1000.0 * 1000.0 * 1000.0));
}

/* convert seconds to ns */
static tw_stime s_to_ns(tw_stime ns)
{
    return(ns * (1000.0 * 1000.0 * 1000.0));
}

395 396 397 398
/* see declaration for more general info */
tw_lpid get_next_server(tw_lpid sender_id)
{
    tw_lpid rtn_id;
399
    /* first, get callers LP and group info from codes-mapping. Caching this
400 401
     * info in the LP struct isn't a bad idea for preventing a huge number of
     * lookups */
402 403
    char grp_name[MAX_NAME_LENGTH], lp_type_name[MAX_NAME_LENGTH],
         annotation[MAX_NAME_LENGTH];
404
    int  lp_type_id, grp_id, grp_rep_id, off, num_reps;
405
    int dest_rep_id;
406
    codes_mapping_get_lp_info(sender_id, grp_name, &grp_id, lp_type_name,
407
            &lp_type_id, annotation, &grp_rep_id, &off);
408 409
    /* in this example, we assume that, for our group of servers, each
     * "repetition" consists of a single server/NIC pair. Hence, we grab the
410 411 412
     * server ID for the next repetition, looping around if necessary */
    num_reps = codes_mapping_get_group_reps(grp_name);
    dest_rep_id = (grp_rep_id+1) % num_reps;
413
    /* finally, get the server (exactly 1 server per rep -> off w/in rep = 0 */
414 415
    codes_mapping_get_lp_id(grp_name, lp_type_name, NULL, 1, dest_rep_id,
            0, &rtn_id);
416 417 418
    return rtn_id;
}

419 420 421 422 423 424 425
/* handle initial event */
static void handle_kickoff_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
426 427
    (void)b; // unused
    (void)m; // unused
428 429 430 431 432
    int dest_id;
    int use_brute_force_map = 0;
    /* normally, when using ROSS, events are allocated as a result of the event
     * creation process. However, since we are now asking model-net to
     * communicate with an entity on our behalf, we need to generate both the
433
     * message to the recipient and an optional callback message
434 435 436 437 438 439 440 441 442
     * - thankfully, memory need not persist past the model_net_event call - it
     *   copies the messages */
    svr_msg m_local;
    svr_msg m_remote;

    m_local.svr_event_type = LOCAL;
    m_local.src = lp->gid;
    m_remote.svr_event_type = REQ;
    m_remote.src = lp->gid;
443 444 445 446

    /* record when transfers started on this server */
    ns->start_ts = tw_now(lp);

447
    /* each server sends a request to the next highest server
448
     * In this simulation, LP determination is simple: LPs are assigned
449
     * round robin as in serv_1, net_1, serv_2, net_2, etc.
450 451 452 453 454 455 456 457
     * However, that may not always be the case, so we also show a more
     * complicated way to map through codes_mapping */
    if (use_brute_force_map)
        dest_id = (lp->gid + offset)%(num_servers*2);
    else
    {
        dest_id = get_next_server(lp->gid);
    }
458

459
    /* model-net needs to know about (1) higher-level destination LP which is a neighboring server in this case
460
     * (2) struct and size of remote message and (3) struct and size of local message (a local message can be null) */
461
    m->ret = model_net_event(net_id, "test", dest_id, payload_sz, 0.0, sizeof(svr_msg),
462
            (const void*)&m_remote, sizeof(svr_msg), (const void*)&m_local, lp);
463 464 465
    ns->msg_sent_count++;
}

466
/* at the moment, no need for local callbacks from model-net, so we maintain a
467
 * count for debugging purposes */
468 469 470 471 472 473
static void handle_local_event(
		svr_state * ns,
		tw_bf * b,
		svr_msg * m,
		tw_lp * lp)
{
474 475 476
    (void)b;
    (void)m;
    (void)lp;
477 478 479
    ns->local_recvd_count++;
}

480
/* handle recving ack
481 482
 * for this simulation, we repeatedly ping the destination server until num_reqs
 * of size payload_sz have been satisfied - we begin the next req when we
483 484 485 486 487 488 489
 * receive an ACK from the destination server */
static void handle_ack_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
490
    (void)b; // bitflags unused
491 492 493 494 495
    /* the ACK actually doesn't come from the NIC on the other server -
     * model-net "hides" the NIC LP from us so we only see the original
     * destination server */

    /* safety check that this request got to the right server, both with our
496
     * brute-force lp calculation and our more generic codes-mapping
497 498 499 500
     * calculation */
    assert(m->src == (lp->gid + offset)%(num_servers*2) &&
           m->src == get_next_server(lp->gid));

501
    if(ns->msg_sent_count < num_reqs)
502 503 504 505 506 507 508 509 510 511 512
    {
        /* again, allocate our own msgs so model-net can transmit on our behalf */
        svr_msg m_local;
        svr_msg m_remote;

        m_local.svr_event_type = LOCAL;
        m_local.src = lp->gid;
        m_remote.svr_event_type = REQ;
        m_remote.src = lp->gid;

        /* send another request */
513
	m->ret = model_net_event(net_id, "test", m->src, payload_sz, 0.0, sizeof(svr_msg),
514 515 516
                (const void*)&m_remote, sizeof(svr_msg), (const void*)&m_local, lp);
        ns->msg_sent_count++;
        m->incremented_flag = 1;
517

518 519 520 521 522
    }
    else
    {
	/* threshold count reached, stop sending messages */
        m->incremented_flag = 0;
523
        ns->end_ts = tw_now(lp);
524 525 526 527 528 529 530 531 532 533 534
    }
    return;
}

/* handle receiving request */
static void handle_req_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
535
    (void)b;
536 537 538 539 540 541 542 543 544
    svr_msg m_local;
    svr_msg m_remote;

    m_local.svr_event_type = LOCAL;
    m_local.src = lp->gid;
    m_remote.svr_event_type = ACK;
    m_remote.src = lp->gid;

    /* safety check that this request got to the right server */
545

546 547 548 549 550 551 552 553
    assert(lp->gid == (m->src + offset)%(num_servers*2) &&
           lp->gid == get_next_server(m->src));
    ns->msg_recvd_count++;

    /* send ack back */
    /* simulated payload of 1 MiB */
    /* also trigger a local event for completion of payload msg */
    /* remote host will get an ack event */
554 555

    m->ret = model_net_event(net_id, "test", m->src, payload_sz, 0.0, sizeof(svr_msg),
556 557 558 559 560 561 562 563 564
            (const void*)&m_remote, sizeof(svr_msg), (const void*)&m_local, lp);
    return;
}

/* for us, reverse events are very easy, the only LP state that needs to be
 * rolled back are the counts.
 * for more complex simulations, this will not be the case (e.g., state
 * containing queues) */

565 566 567 568 569 570
static void handle_local_rev_event(
	       svr_state * ns,
	       tw_bf * b,
	       svr_msg * m,
	       tw_lp * lp)
{
571 572 573
    (void)b;
    (void)m;
    (void)lp;
574 575 576 577 578 579 580 581 582
   ns->local_recvd_count--;
}
/* reverse handler for req event */
static void handle_req_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
583 584
    (void)b;
    (void)m;
585
    ns->msg_recvd_count--;
586
    /* model-net has its own reverse computation support */
587
    model_net_event_rc2(lp, &m->ret);
588 589 590 591 592 593 594 595 596 597 598 599

    return;
}


/* reverse handler for kickoff */
static void handle_kickoff_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
600 601
    (void)b;
    (void)m;
602
    ns->msg_sent_count--;
603
    model_net_event_rc2(lp, &m->ret);
604 605 606 607 608 609 610 611 612 613 614

    return;
}

/* reverse handler for ack*/
static void handle_ack_rev_event(
    svr_state * ns,
    tw_bf * b,
    svr_msg * m,
    tw_lp * lp)
{
615
    (void)b;
616 617
    if(m->incremented_flag)
    {
618
        model_net_event_rc2(lp, &m->ret);
619 620 621 622 623 624 625 626 627 628 629 630 631
        ns->msg_sent_count--;
    }
    return;
}

/*
 * Local variables:
 *  c-indent-level: 4
 *  c-basic-offset: 4
 * End:
 *
 * vim: ft=c ts=8 sts=4 sw=4 expandtab
 */