dragonfly-custom.C 169 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

#include <ross.h>

#include "codes/jenkins-hash.h"
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
#include "codes/model-net-lp.h"
15
#include "codes/net/dragonfly-custom.h"
16 17 18
#include "sys/file.h"
#include "codes/quickhash.h"
#include "codes/rc-stack.h"
19 20
#include <vector>
#include <map>
21
#include <set>
22

23 24 25 26
#ifdef ENABLE_CORTEX
#include <cortex/cortex.h>
#include <cortex/topology.h>
#endif
27

28
#define DUMP_CONNECTIONS 0
29
#define PRINT_CONFIG 1
30
#define CREDIT_SIZE 8
31
#define DFLY_HASH_TABLE_SIZE 100000
32
// debugging parameters
33
#define BW_MONITOR 1
34
#define DEBUG_LP 892
35
#define T_ID -1
36
#define TRACK -1
37
#define TRACK_PKT -1
38 39 40
#define TRACK_MSG -1
#define DEBUG 0
#define MAX_STATS 65536
41
#define SHOW_ADAP_STATS 1
42 43 44 45 46

#define LP_CONFIG_NM_TERM (model_net_lp_config_names[DRAGONFLY_CUSTOM])
#define LP_METHOD_NM_TERM (model_net_method_names[DRAGONFLY_CUSTOM])
#define LP_CONFIG_NM_ROUT (model_net_lp_config_names[DRAGONFLY_CUSTOM_ROUTER])
#define LP_METHOD_NM_ROUT (model_net_method_names[DRAGONFLY_CUSTOM_ROUTER])
47

48
static int debug_cnt = 0;
49
static int num_rc_windows = 100;
50 51 52 53 54
static int max_lvc_src_g = 1;
static int max_lvc_intm_g = 3;
static int min_gvc_src_g = 0;
static int min_gvc_intm_g = 1;

55
static int BIAS_MIN = 1;
56
static int DF_DALLY = 0;
57
static int adaptive_threshold = 1024;
58

59
static tw_stime max_qos_monitor = 5000000000;
60 61 62
static long num_local_packets_sr = 0;
static long num_local_packets_sg = 0;
static long num_remote_packets = 0;
63 64 65 66

/* time in nanosecs */
static int bw_reset_window = 5000000;

67 68 69 70 71 72 73
using namespace std;
struct Link {
  int offset, type;
};
struct bLink {
  int offset, dest;
};
74 75 76 77 78
/* Each entry in the vector is for a router id
 * against each router id, there is a map of links (key of the map is the dest
 * router id)
 * link has information on type (green or black) and offset (number of links
 * between that particular source and dest router ID)*/
79
vector< map< int, vector<Link> > > intraGroupLinks;
80 81
/* contains mapping between source router and destination group via link (link
 * has dest ID)*/
82
vector< map< int, vector<bLink> > > interGroupLinks;
83
/*MM: Maintains a list of routers connecting the source and destination groups */
84 85 86 87 88 89 90 91 92 93
vector< vector< vector<int> > > connectionList;

struct IntraGroupLink {
  int src, dest, type;
};

struct InterGroupLink {
  int src, dest;
};

94 95 96 97 98 99
#ifdef ENABLE_CORTEX
/* This structure is defined at the end of the file */
extern "C" {
extern cortex_topology dragonfly_custom_cortex_topology;
}
#endif
100

101 102 103
static int debug_slot_count = 0;
static long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
static long packet_gen = 0, packet_fin = 0;
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

static double maxd(double a, double b) { return a < b ? b : a; }

/* minimal and non-minimal packet counts for adaptive routing*/
static int minimal_count=0, nonmin_count=0;
static int num_routers_per_mgrp = 0;

typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;

/* global variables for codes mapping */
static char lp_group_name[MAX_NAME_LENGTH];
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

/* router magic number */
123
static int router_magic_num = 0;
124 125

/* terminal magic number */
126
static int terminal_magic_num = 0;
127

128 129 130 131
/* Hops within a group */
static int num_intra_nonmin_hops = 4;
static int num_intra_min_hops = 2;

132
static FILE * dragonfly_rtr_bw_log = NULL;
133
//static FILE * dragonfly_term_bw_log = NULL;
134

135 136
static int sample_bytes_written = 0;
static int sample_rtr_bytes_written = 0;
137

138 139
static char cn_sample_file[MAX_NAME_LENGTH];
static char router_sample_file[MAX_NAME_LENGTH];
140

141 142
//don't do overhead here - job of MPI layer
static tw_stime mpi_soft_overhead = 0;
143

144 145 146
typedef struct terminal_custom_message_list terminal_custom_message_list;
struct terminal_custom_message_list {
    terminal_custom_message msg;
147
    char* event_data;
148 149
    terminal_custom_message_list *next;
    terminal_custom_message_list *prev;
150 151
};

152
static void init_terminal_custom_message_list(terminal_custom_message_list *thisO, 
153
    terminal_custom_message *inmsg) {
154 155 156 157
    thisO->msg = *inmsg;
    thisO->event_data = NULL;
    thisO->next = NULL;
    thisO->prev = NULL;
158 159
}

160 161 162 163
static void delete_terminal_custom_message_list(void *thisO) {
    terminal_custom_message_list* toDel = (terminal_custom_message_list*)thisO;
    if(toDel->event_data != NULL) free(toDel->event_data);
    free(toDel);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
}

struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
180 181
    int intra_grp_radix;
    int num_col_chans;
182
    int num_row_chans;
183 184
    int num_router_rows;
    int num_router_cols;
185 186 187 188 189
    int num_groups;
    int radix;
    int total_routers;
    int total_terminals;
    int num_global_channels;
190 191
    int num_qos_levels;
    int * qos_bandwidths;
192 193 194 195 196
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
    double router_delay;
197 198

    int max_hops_notify; //maximum number of hops allowed before notifying via printout
199 200
};

201 202 203
static const dragonfly_param* stored_params;


204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_router_sample
{
    tw_lpid router_id;
    tw_stime* busy_time;
    int64_t* link_traffic_sample;
    tw_stime end_time;
    long fwd_events;
    long rev_events;
};

struct dfly_cn_sample
{
   tw_lpid terminal_id;
   long fin_chunks_sample;
   long data_size_sample;
   double fin_hops_sample;
   tw_stime fin_chunks_time;
   tw_stime busy_time_sample;
   tw_stime end_time;
   long fwd_events;
   long rev_events;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

/* handles terminal and router events like packet generate/send/receive/buffer */
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   uint64_t packet_counter;

   int packet_gen;
   int packet_fin;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   tw_stime terminal_available_time;
261 262
   terminal_custom_message_list **terminal_msgs;
   terminal_custom_message_list **terminal_msgs_tail;
263 264 265
   int in_send_loop;
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];

266 267
   int * qos_status;
   int * qos_data;
268 269 270 271 272

   int rc_index;
   int** last_qos_status;
   int** last_qos_data;

273 274 275
   int last_qos_lvl;
   int is_monitoring_bw;

276 277
   struct rc_stack * st;
   int issueIdle;
278
   int* terminal_length;
279 280 281 282 283 284 285 286 287 288 289 290 291 292

   const char * anno;
   const dragonfly_param *params;

   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;

   tw_stime   total_time;
   uint64_t total_msg_size;
   double total_hops;
   long finished_msgs;
   long finished_chunks;
   long finished_packets;

293
   tw_stime last_buf_full;
294
   tw_stime busy_time;
295 296 297 298
   
   tw_stime max_latency;
   tw_stime min_latency;

299
   char output_buf[4096];
300
   char output_buf2[4096];
301 302 303 304 305 306 307 308 309 310 311 312 313 314
   /* For LP suspend functionality */
   int error_ct;

   /* For sampling */
   long fin_chunks_sample;
   long data_size_sample;
   double fin_hops_sample;
   tw_stime fin_chunks_time;
   tw_stime busy_time_sample;

   char sample_buf[4096];
   struct dfly_cn_sample * sample_stat;
   int op_arr_size;
   int max_arr_size;
315
  
316 317 318
   /* for logging forward and reverse events */
   long fwd_events;
   long rev_events;
319 320 321 322 323 324 325 326

   /* following used for ROSS model-level stats collection */
   long fin_chunks_ross_sample;
   long data_size_ross_sample;
   long fin_hops_ross_sample;
   tw_stime fin_chunks_time_ross_sample;
   tw_stime busy_time_ross_sample;
   struct dfly_cn_sample ross_sample;
327 328
};

329 330 331 332 333 334 335 336 337 338 339 340 341
typedef enum qos_priority
{
    Q_HIGH =0,
    Q_MEDIUM,
    Q_LOW,
    Q_UNKNOWN,
} qos_priority;

typedef enum qos_status
{
    Q_ACTIVE = 1,
    Q_OVERBW,
} qos_status;
342
/* terminal event type (1-4) */
343
typedef enum event_t
344 345 346 347 348 349 350 351
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
  R_BUFFER,
352 353 354
  R_BANDWIDTH,
  R_BW_HALT,
  T_BANDWIDTH,
355
} event_t;
356 357 358 359

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
360
   GLOBAL=1,
361
   LOCAL,
362 363
   TERMINAL,
   ROOT
364 365 366 367 368 369 370
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
371
    MINIMAL = 1,
372 373 374 375 376
    NON_MINIMAL,
    ADAPTIVE,
    PROG_ADAPTIVE
};

377 378 379 380 381
enum LINK_TYPE
{
    GREEN,
    BLACK,
};
382 383 384 385 386 387
struct router_state
{
   unsigned int router_id;
   int group_id;
   int op_arr_size;
   int max_arr_size;
388
   int rc_index;
389 390 391 392 393

   int* global_channel; 
   
   tw_stime* next_output_available_time;
   tw_stime* cur_hist_start_time;
394
   tw_stime* last_buf_full;
395 396 397 398

   tw_stime* busy_time;
   tw_stime* busy_time_sample;

399 400 401 402
   terminal_custom_message_list ***pending_msgs;
   terminal_custom_message_list ***pending_msgs_tail;
   terminal_custom_message_list ***queued_msgs;
   terminal_custom_message_list ***queued_msgs_tail;
403 404 405
   int *in_send_loop;
   int *queued_count;
   struct rc_stack * st;
406 407

   int* last_sent_chan;
408 409 410 411
   int** vc_occupancy;
   int64_t* link_traffic;
   int64_t * link_traffic_sample;

412 413 414 415
   int is_monitoring_bw;
   int* last_qos_lvl;
   int** qos_status;
   int** qos_data;
416 417 418
   /* for reverse handler */
   int*** last_qos_status;
   int*** last_qos_data;
419

420 421 422 423 424 425 426 427 428 429 430 431
   const char * anno;
   const dragonfly_param *params;

   int* prev_hist_num;
   int* cur_hist_num;
   
   char output_buf[4096];

   struct dfly_router_sample * rsamples;
   
   long fwd_events;
   long rev_events;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

   /* following used for ROSS model-level stats collection */
   tw_stime* busy_time_ross_sample;
   int64_t * link_traffic_ross_sample;
   struct dfly_router_sample ross_rsample;
};

/* had to pull some of the ROSS model stats collection stuff up here */
void custom_dragonfly_event_collect(terminal_custom_message *m, tw_lp *lp, char *buffer, int *collect_flag);
void custom_dragonfly_model_stat_collect(terminal_state *s, tw_lp *lp, char *buffer);
void custom_dfly_router_model_stat_collect(router_state *s, tw_lp *lp, char *buffer);
static void ross_custom_dragonfly_rsample_fn(router_state * s, tw_bf * bf, tw_lp * lp, struct dfly_router_sample *sample);
static void ross_custom_dragonfly_rsample_rc_fn(router_state * s, tw_bf * bf, tw_lp * lp, struct dfly_router_sample *sample);
static void ross_custom_dragonfly_sample_fn(terminal_state * s, tw_bf * bf, tw_lp * lp, struct dfly_cn_sample *sample);
static void ross_custom_dragonfly_sample_rc_fn(terminal_state * s, tw_bf * bf, tw_lp * lp, struct dfly_cn_sample *sample);

st_model_types custom_dragonfly_model_types[] = {
449
    {(ev_trace_f) custom_dragonfly_event_collect,
450 451 452 453 454 455
     sizeof(int),
     (model_stat_f) custom_dragonfly_model_stat_collect,
     sizeof(tw_lpid) + sizeof(long) * 2 + sizeof(double) + sizeof(tw_stime) *2,
     (sample_event_f) ross_custom_dragonfly_sample_fn,
     (sample_revent_f) ross_custom_dragonfly_sample_rc_fn,
     sizeof(struct dfly_cn_sample) } , 
456
    {(ev_trace_f) custom_dragonfly_event_collect,
457 458
     sizeof(int),
     (model_stat_f) custom_dfly_router_model_stat_collect,
459
     0, //updated in router_custom_setup() since it's based on the radix
460 461
     (sample_event_f) ross_custom_dragonfly_rsample_fn,
     (sample_revent_f) ross_custom_dragonfly_rsample_rc_fn,
462
     0 } , //updated in router_custom_setup() since it's based on the radix    
463
    {NULL, 0, NULL, 0, NULL, NULL, 0}
464
};
465
/* End of ROSS model stats collection */
466 467 468 469 470 471 472 473 474 475 476 477 478

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;


static long long       total_hops = 0;
static long long       N_finished_packets = 0;
static long long       total_msg_sz = 0;
static long long       N_finished_msgs = 0;
static long long       N_finished_chunks = 0;

479 480 481 482 483 484 485 486 487 488
/* convert ns to seconds */
static tw_stime ns_to_s(tw_stime ns)
{
        return(ns / (1000.0 * 1000.0 * 1000.0));
}

static double bytes_to_gigabytes(double bytes)
{
    return bytes / (double) (1024 * 1024 * 1024);
}
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp = NULL;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
static int dragonfly_hash_func(void *k, int table_size)
{
    struct dfly_hash_key *tmp = (struct dfly_hash_key *)k;
506 507 508 509
    uint32_t pc = 0, pb = 0;	
    bj_hashlittle2(tmp, sizeof(*tmp), &pc, &pb);
    return (int)(pc % (table_size - 1));
    /*uint64_t key = (~tmp->message_id) + (tmp->message_id << 18);
510 511 512
    key = key * 21;
    key = ~key ^ (tmp->sender_id >> 4);
    key = key * tmp->sender_id; 
513
    return (int)(key & (table_size - 1));*/
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
}

/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* GiB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}

/* returns the dragonfly message size */
532
int dragonfly_custom_get_msg_sz(void)
533
{
534
	   return sizeof(terminal_custom_message);
535 536 537 538
}

static void free_tmp(void * ptr)
{
539
    struct dfly_qhash_entry * dfly = (dfly_qhash_entry *)ptr; 
540 541 542 543 544
    if(dfly->remote_event_data)
        free(dfly->remote_event_data);
   
    if(dfly)
        free(dfly);
545
}
546

547 548 549 550 551 552 553 554 555
int get_vcg_from_category(terminal_custom_message * msg)
{
   if(strcmp(msg->category, "high") == 0)
       return Q_HIGH;
   else if(strcmp(msg->category, "medium") == 0)
       return Q_MEDIUM;
   else
       tw_error(TW_LOC, "\n priority needs to be specified with qos_levels>1 %d", msg->category);
}
556 557 558
static void append_to_terminal_custom_message_list(  
        terminal_custom_message_list ** thisq,
        terminal_custom_message_list ** thistail,
559
        int index, 
560
        terminal_custom_message_list *msg) {
561
//    printf("\n msg id %d ", msg->msg.packet_ID);
562 563 564
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
565
        assert(thistail[index] != NULL);
566 567 568 569
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
570
//    printf("\n done adding %d ", msg->msg.packet_ID);
571 572
}

573 574 575
static void prepend_to_terminal_custom_message_list(  
        terminal_custom_message_list ** thisq,
        terminal_custom_message_list ** thistail,
576
        int index, 
577
        terminal_custom_message_list *msg) {
578 579 580 581 582 583 584 585 586
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}

587 588 589
static terminal_custom_message_list* return_head(
        terminal_custom_message_list ** thisq,
        terminal_custom_message_list ** thistail,
590
        int index) {
591
    terminal_custom_message_list *head = thisq[index];
592 593 594 595 596 597 598 599 600 601 602 603
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
}

604 605 606
static terminal_custom_message_list* return_tail(
        terminal_custom_message_list ** thisq,
        terminal_custom_message_list ** thistail,
607
        int index) {
608
    terminal_custom_message_list *tail = thistail[index];
609 610 611 612 613 614 615 616 617 618 619
    assert(tail);
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
}
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/* TODO: Differentiate between local and global bandwidths. */
static int get_rtr_bandwidth_consumption(router_state * s, int qos_lvl, int output_port)
{
    assert(qos_lvl >= Q_HIGH && qos_lvl <= Q_LOW);
    assert(output_port < s->params->intra_grp_radix + s->params->num_global_channels + s->params->num_cn);

    int bandwidth = s->params->cn_bandwidth;
    if(output_port < s->params->intra_grp_radix)
        bandwidth = s->params->local_bandwidth;
    else if(output_port < s->params->intra_grp_radix + s->params->num_global_channels)
        bandwidth = s->params->global_bandwidth;

    /* conversion into bytes from GiB */
    double max_bw = bandwidth * 1024.0 * 1024.0 * 1024.0;
    double max_bw_per_ns = max_bw / (1000.0 * 1000.0 * 1000.0);
    double max_bytes_per_win = max_bw_per_ns * bw_reset_window;

    /* bw_consumed would be in Gigabytes per second. */
//    tw_stime reset_window_s = ns_to_s(bw_reset_window);
//    double bw_gib = bytes_to_gigabytes(s->qos_data[output_port][qos_lvl]);
//    double bw_consumed = ((double)bw_gib / (double)reset_window_s);
    int percent_bw = (((double)s->qos_data[output_port][qos_lvl]) / max_bytes_per_win) * 100;
//    printf("\n percent bw consumed by qos_lvl %d is %d bytes transferred %d max_bw %lf ", qos_lvl, percent_bw, s->qos_data[output_port][qos_lvl], max_bw_per_ns);
    return percent_bw;

}
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
void dragonfly_print_params(const dragonfly_param *p)
{
    int myRank;
    MPI_Comm_rank(MPI_COMM_CODES, &myRank);
    if (!myRank) { 
        printf("\n------------------ Dragonfly Custom Parameters ---------\n");
        printf("\tnum_routers =            %d\n",p->num_routers);
        printf("\tlocal_bandwidth =        %.2f\n",p->local_bandwidth);
        printf("\tglobal_bandwidth =       %.2f\n",p->global_bandwidth);
        printf("\tcn_bandwidth =           %.2f\n",p->cn_bandwidth);
        printf("\tnum_vcs =                %d\n",p->num_vcs);
        printf("\tlocal_vc_size =          %d\n",p->local_vc_size);
        printf("\tglobal_vc_size =         %d\n",p->global_vc_size);
        printf("\tcn_vc_size =             %d\n",p->cn_vc_size);
        printf("\tchunk_size =             %d\n",p->chunk_size);
        printf("\tnum_cn =                 %d\n",p->num_cn);
        printf("\tintra_grp_radix =        %d\n",p->intra_grp_radix);
        printf("\tnum_col_chans =          %d\n",p->num_col_chans);
        printf("\tnum_row_chans =          %d\n",p->num_row_chans);
        printf("\tnum_router_rows =        %d\n",p->num_router_rows);
        printf("\tnum_router_cols =        %d\n",p->num_router_cols);
        printf("\tnum_groups =             %d\n",p->num_groups);
        printf("\tradix =                  %d\n",p->radix);
        printf("\ttotal_routers =          %d\n",p->total_routers);
        printf("\ttotal_terminals =        %d\n",p->total_terminals);
        printf("\tnum_global_channels =    %d\n",p->num_global_channels);
        printf("\tcn_delay =               %.2f\n",p->cn_delay);
        printf("\tlocal_delay =            %.2f\n",p->local_delay);
        printf("\tglobal_delay =           %.2f\n",p->global_delay);
        printf("\tcredit_delay =           %.2f\n",p->credit_delay);
        printf("\trouter_delay =           %.2f\n",p->router_delay);
        printf("\trouting =                %d\n",routing);
679
        printf("\tmax hops notification =  %d\n",p->max_hops_notify);
680 681 682 683
        printf("------------------------------------------------------\n\n");
    }
}

684
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
685 686 687 688 689 690 691 692
    /*Adding init for router magic number*/
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM_ROUT, strlen(LP_METHOD_NM_ROUT), &h1, &h2);
    router_magic_num = h1 + h2;
    
    bj_hashlittle2(LP_METHOD_NM_TERM, strlen(LP_METHOD_NM_TERM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
693 694
    // shorthand
    dragonfly_param *p = params;
695
    int myRank;
696
    MPI_Comm_rank(MPI_COMM_CODES, &myRank);
697

698
    int rc = configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
699 700 701 702 703
    if(rc) {
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    rc = configuration_get_value_int(&config, "PARAMS", "qos_levels", anno, &p->num_qos_levels);
    if(rc) {
        p->num_qos_levels = 1;
        fprintf(stderr, "Number of QOS levels not specified, setting to %d\n", p->num_qos_levels);
    }

    char qos_levels_str[MAX_NAME_LENGTH];
    rc = configuration_get_value(&config, "PARAMS", "qos_bandwidth", anno, qos_levels_str, MAX_NAME_LENGTH);
    p->qos_bandwidths = (int*)calloc(p->num_qos_levels, sizeof(int));

    if(p->num_qos_levels > 1)
    {
        int total_bw = 0;
        char * token;
        token = strtok(qos_levels_str, ",");
        int i = 0;
        while(token != NULL)
        {
            sscanf(token, "%d", &p->qos_bandwidths[i]);
            total_bw += p->qos_bandwidths[i];
            if(p->qos_bandwidths[i] <= 0)
            {
                tw_error(TW_LOC, "\n Invalid bandwidth levels");
            }
            i++;
            token = strtok(NULL,",");
        }
        assert(total_bw <= 100);
    }
    else
        p->qos_bandwidths[0] = 100;
    rc = configuration_get_value_double(&config, "PARAMS", "max_qos_monitor", anno, &max_qos_monitor);
    if(rc) {
        printf("\n Setting adaptive threshold to %lf ", max_qos_monitor);
	}
739 740 741
    rc = configuration_get_value_int(&config, "PARAMS", "adaptive_threshold", anno, &adaptive_threshold);
    if(rc) {
    	adaptive_threshold = p->local_vc_size / 8;
742
        printf("\n Setting adaptive threshold to %d ", adaptive_threshold);
743
	}
744 745 746 747
    else
    {
        printf("\n Setting adaptive threshold to %d ", adaptive_threshold);
    }
748

749 750 751 752 753 754
    rc = configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
    if(rc) {
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

755 756 757 758
    rc = configuration_get_value_int(&config, "PARAMS", "df-dally-vc", anno, &DF_DALLY);
    if(rc) {
        DF_DALLY = 0;
    }
759 760 761 762 763
    
    rc = configuration_get_value_int(&config, "PARAMS", "minimal-bias", anno, &BIAS_MIN);
    if(rc) {
        BIAS_MIN = 0;
    }
764 765 766
    else
	printf("\n Setting minimal bias");

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    rc = configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
    if(rc) {
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    rc = configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
    if(rc) {
        p->chunk_size = 512;
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
    }

    rc = configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
    if(rc) {
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    rc = configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
    if(rc) {
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    rc = configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
    if(rc) {
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

797
    rc = configuration_get_value_double(&config, "PARAMS", "router_delay", anno,
798
            &p->router_delay);
799
    if(rc) {
800 801
      p->router_delay = 100;
    }
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

    configuration_get_value(&config, "PARAMS", "cn_sample_file", anno, cn_sample_file,
            MAX_NAME_LENGTH);
    configuration_get_value(&config, "PARAMS", "rt_sample_file", anno, router_sample_file,
            MAX_NAME_LENGTH);
    
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
            MAX_NAME_LENGTH);
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
819
	      routing = PROG_ADAPTIVE;
820 821 822 823 824 825 826
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
        routing = -1;
    }

827 828 829 830 831 832
    rc = configuration_get_value_int(&config, "PARAMS", "notification_on_hops_greater_than", anno, &p->max_hops_notify);
    if (rc) {
        printf("Maximum hops for notifying not specified, setting to INT MAX\n");
        p->max_hops_notify = INT_MAX;
    }

833 834 835 836 837 838 839 840 841 842
    // rc = configuration_get_value_int(&config, "PARAMS", "num_vcs_override", anno, &p->num_vcs);
    // if(rc) {
    //     if(routing == PROG_ADAPTIVE)
    //         p->num_vcs = 10;
    //     else
    //         p->num_vcs = 8;
    // }
    // else {
    //     printf("Overriding num_vcs: p->num_vcs=%d\n",p->num_vcs);
    // }
843 844 845
   
if(DF_DALLY == 0) 
{
846 847 848
    //if(routing == PROG_ADAPTIVE)
    //    p->num_vcs = 10;
    //else
849
        p->num_vcs = 8;
850 851 852
}
else
{
853
        p->num_vcs = 4;
854
}
855 856 857
    if(p->num_qos_levels > 1)
        p->num_vcs = p->num_qos_levels * p->num_vcs;

858 859 860
    rc = configuration_get_value_int(&config, "PARAMS", "num_groups", anno, &p->num_groups);
    if(rc) {
      printf("Number of groups not specified. Aborting");
861
      MPI_Abort(MPI_COMM_CODES, 1);
862
    }
863 864 865 866 867
    rc = configuration_get_value_int(&config, "PARAMS", "num_col_chans", anno, &p->num_col_chans);
    if(rc) {
//        printf("\n Number of links connecting chassis not specified, setting to default value 3 ");
        p->num_col_chans = 3;
    }
868 869 870 871 872
    rc = configuration_get_value_int(&config, "PARAMS", "num_row_chans", anno, &p->num_row_chans);
    if(rc) {
//        printf("\n Number of links connecting chassis not specified, setting to default value 3 ");
        p->num_row_chans = 1;
    }
873 874 875 876 877 878 879 880 881 882
    rc = configuration_get_value_int(&config, "PARAMS", "num_router_rows", anno, &p->num_router_rows);
    if(rc) {
        printf("\n Number of router rows not specified, setting to 6 ");
        p->num_router_rows = 6;
    }
    rc = configuration_get_value_int(&config, "PARAMS", "num_router_cols", anno, &p->num_router_cols);
    if(rc) {
        printf("\n Number of router columns not specified, setting to 16 ");
        p->num_router_cols = 16;
    }
883 884 885 886
    p->intra_grp_radix = (p->num_router_cols * p->num_row_chans);
    if(p->num_router_rows > 1)
        p->intra_grp_radix += (p->num_router_rows * p->num_col_chans);

887 888
    p->num_routers = p->num_router_rows * p->num_router_cols;
    
889
    rc = configuration_get_value_int(&config, "PARAMS", "num_cns_per_router", anno, &p->num_cn);
890
    if(rc) {
891 892
        printf("\n Number of cns per router not specified, setting to %d ", p->num_routers/2);
        p->num_cn = p->num_routers/2;
893
    }
894

895 896
    rc = configuration_get_value_int(&config, "PARAMS", "num_global_channels", anno, &p->num_global_channels);
    if(rc) {
897 898
        printf("\n Number of global channels per router not specified, setting to 10 ");
        p->num_global_channels = 10;
899
    }
900
    p->radix = p->intra_grp_radix + p->num_global_channels + p->num_cn;
901 902
    p->total_routers = p->num_groups * p->num_routers;
    p->total_terminals = p->total_routers * p->num_cn;
903 904 905 906
    
    // read intra group connections, store from a router's perspective
    // all links to the same router form a vector
    char intraFile[MAX_NAME_LENGTH];
907
    configuration_get_value(&config, "PARAMS", "intra-group-connections", 
908
        anno, intraFile, MAX_NAME_LENGTH);
909 910
    if(strlen(intraFile) <= 0) {
      tw_error(TW_LOC, "Intra group connections file not specified. Aborting");
911 912
    }
    FILE *groupFile = fopen(intraFile, "rb");
913 914 915
    if(!groupFile)
        tw_error(TW_LOC, "intra-group file not found ");

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    if(!myRank)
      printf("Reading intra-group connectivity file: %s\n", intraFile);

    {
      vector< int > offsets;
      offsets.resize(p->num_routers, 0);
      intraGroupLinks.resize(p->num_routers);
      IntraGroupLink newLink;

      while(fread(&newLink, sizeof(IntraGroupLink), 1, groupFile) != 0) {
        Link tmpLink;
        tmpLink.type = newLink.type;
        tmpLink.offset = offsets[newLink.src]++;
        intraGroupLinks[newLink.src][newLink.dest].push_back(tmpLink);
      }
    }

    fclose(groupFile);

    // read inter group connections, store from a router's perspective
    // also create a group level table that tells all the connecting routers
    char interFile[MAX_NAME_LENGTH];
938
    configuration_get_value(&config, "PARAMS", "inter-group-connections", 
939
        anno, interFile, MAX_NAME_LENGTH);
940 941
    if(strlen(interFile) <= 0) {
      tw_error(TW_LOC, "Inter group connections file not specified. Aborting");
942 943 944
    }
    FILE *systemFile = fopen(interFile, "rb");
    if(!myRank)
945
    {
946
      printf("Reading inter-group connectivity file: %s\n", interFile);
947 948
      printf("\n Total routers %d total groups %d ", p->total_routers, p->num_groups);
    }
949 950 951 952 953 954 955 956 957

    {
      vector< int > offsets;
      offsets.resize(p->total_routers, 0);
      interGroupLinks.resize(p->total_routers);
      connectionList.resize(p->num_groups);
      for(int g = 0; g < connectionList.size(); g++) {
        connectionList[g].resize(p->num_groups);
      }
958
      
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
      InterGroupLink newLink;

      while(fread(&newLink, sizeof(InterGroupLink), 1, systemFile) != 0) {
        bLink tmpLink;
        tmpLink.dest = newLink.dest;
        int srcG = newLink.src / p->num_routers;
        int destG = newLink.dest / p->num_routers;
        tmpLink.offset = offsets[newLink.src]++;
        interGroupLinks[newLink.src][destG].push_back(tmpLink);
        int r;
        for(r = 0; r < connectionList[srcG][destG].size(); r++) {
          if(connectionList[srcG][destG][r] == newLink.src) break;
        }
        if(r == connectionList[srcG][destG].size()) {
          connectionList[srcG][destG].push_back(newLink.src);
        }
      }
    }

    fclose(systemFile);

980
#if DUMP_CONNECTIONS == 1
981 982 983 984 985 986 987 988
    printf("Dumping intra-group connections\n");
    for(int a = 0; a < intraGroupLinks.size(); a++) {
      printf("Connections for router %d\n", a);
      map< int, vector<Link> >  &curMap = intraGroupLinks[a];
      map< int, vector<Link> >::iterator it = curMap.begin();
      for(; it != curMap.end(); it++) {
        printf(" ( %d - ", it->first);
        for(int l = 0; l < it->second.size(); l++) {
989
          // offset is number of local connections
990
          // type is black or green according to Cray architecture 
991 992 993 994 995 996 997
          printf("%d,%d ", it->second[l].offset, it->second[l].type);
        }
        printf(")");
      }
      printf("\n");
    }
#endif
998
#if DUMP_CONNECTIONS == 1
999 1000 1001
    printf("Dumping inter-group connections\n");
    for(int a = 0; a < interGroupLinks.size(); a++) {
      printf("Connections for router %d\n", a);
1002 1003
      map< int, vector<bLink> >  &curMap = interGroupLinks[a];
      map< int, vector<bLink> >::iterator it = curMap.begin();
1004
      for(; it != curMap.end(); it++) {
1005
        // dest group ID 
1006 1007
        printf(" ( %d - ", it->first);
        for(int l = 0; l < it->second.size(); l++) {
1008 1009
            // dest is dest router ID
            // offset is number of global connections
1010 1011 1012 1013 1014 1015 1016 1017
          printf("%d,%d ", it->second[l].offset, it->second[l].dest);
        }
        printf(")");
      }
      printf("\n");
    }
#endif

1018
#if DUMP_CONNECTIONS == 1
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    printf("Dumping source aries for global connections\n");
    for(int g = 0; g < p->num_groups; g++) {
      for(int g1 = 0; g1 < p->num_groups; g1++) {
        printf(" ( ");
        for(int l = 0; l < connectionList[g][g1].size(); l++) {
          printf("%d ", connectionList[g][g1][l]);
        }
        printf(")");
      }
      printf("\n");
    }
#endif
    if(!myRank) {
1032
        printf("\n Total nodes %d routers %d groups %d routers per group %d radix %d\n",
1033
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
1034
                p->num_routers, p->radix);
1035
    }
1036

1037 1038 1039
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
1040
    p->credit_delay = bytes_to_ns(CREDIT_SIZE, p->local_bandwidth); //assume 8 bytes packet
1041 1042 1043 1044 1045

    if (PRINT_CONFIG) 
        dragonfly_print_params(p);

    stored_params = p;
1046 1047
}

1048
void dragonfly_custom_configure(){
1049 1050 1051
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM_TERM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
1052
    all_params = (dragonfly_param *)calloc(num_params, sizeof(*all_params));
1053 1054 1055 1056 1057 1058 1059 1060

    for (int i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i].ptr;
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
1061 1062 1063
#ifdef ENABLE_CORTEX
	model_net_topology = dragonfly_custom_cortex_topology;
#endif
1064 1065 1066
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
1067
void dragonfly_custom_report_stats()
1068 1069 1070 1071 1072 1073
{
   long long avg_hops, total_finished_packets, total_finished_chunks;
   long long total_finished_msgs, final_msg_sz;
   tw_stime avg_time, max_time;
   int total_minimal_packets, total_nonmin_packets;
   long total_gen, total_fin;
1074
   long total_local_packets_sr, total_local_packets_sg, total_remote_packets;
1075

1076 1077 1078 1079 1080 1081 1082
   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &N_finished_msgs, &total_finished_msgs, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &N_finished_chunks, &total_finished_chunks, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &total_msg_sz, &final_msg_sz, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_CODES);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_CODES);
1083
   
1084
   MPI_Reduce( &packet_gen, &total_gen, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_CODES);
1085
   MPI_Reduce(&packet_fin, &total_fin, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_CODES);
1086 1087
    MPI_Reduce( &num_local_packets_sr, &total_local_packets_sr, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_CODES);
    MPI_Reduce( &num_local_packets_sg, &total_local_packets_sg, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_CODES);
1088
   MPI_Reduce( &num_remote_packets, &total_remote_packets, 1, MPI_LONG, MPI_SUM, 0, MPI_COMM_CODES);
1089
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE || SHOW_ADAP_STATS)
1090
    {
1091 1092
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_CODES);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_CODES);
1093 1094 1095 1096 1097
    }

   /* print statistics */
   if(!g_tw_mynode)
   {	
1098 1099 1100
    if (PRINT_CONFIG) 
        dragonfly_print_params(stored_params);

1101 1102
      printf(" Average number of hops traversed %f average chunk latency %lf us maximum chunk latency %lf us avg message size %lf bytes finished messages %lld finished chunks %lld \n", 
              (float)avg_hops/total_finished_chunks, avg_time/(total_finished_chunks*1000), max_time/1000, (float)final_msg_sz/total_finished_msgs, total_finished_msgs, total_finished_chunks);
1103
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE || SHOW_ADAP_STATS)
1104 1105 1106
              printf("\n ADAPTIVE ROUTING STATS: %d chunks routed minimally %d chunks routed non-minimally completed packets %lld \n", 
                      total_minimal_packets, total_nonmin_packets, total_finished_chunks);
 
1107
      printf("\n Total packets generated %ld finished %ld Locally routed- same router %ld different-router %ld Remote (inter-group) %ld \n", total_gen, total_fin, total_local_packets_sr, total_local_packets_sg, total_remote_packets);
1108 1109 1110 1111
   }
   return;
}

1112 1113 1114
void issue_bw_monitor_event_rc(terminal_state * s, tw_bf * bf, terminal_custom_message * msg, tw_lp * lp)
{
    int num_qos_levels = s->params->num_qos_levels;
1115 1116 1117 1118
    int rc_index = 0;
    if(s->rc_index > 0)
        rc_index = s->rc_index - 1;

1119 1120
    for(int k = 0; k < num_qos_levels; k++)
    {
1121 1122 1123 1124
        s->qos_status[k] = s->last_qos_status[rc_index][k];
        s->qos_data[k] = s->last_qos_data[rc_index][k];
        s->last_qos_status[rc_index][k] = 0;
        s->last_qos_data[rc_index][k] = 0;
1125
    }
1126 1127
    s->rc_index--;

1128 1129 1130 1131 1132 1133 1134
    codes_local_latency_reverse(lp); 
}
/* resets the bandwidth numbers recorded so far */
void issue_bw_monitor_event(terminal_state * s, tw_bf * bf, terminal_custom_message * msg, tw_lp * lp)
{
    
    int num_qos_levels = s->params->num_qos_levels;
1135
    int rc_index = s->rc_index;
1136 1137 1138
    /* Reset the qos status and bandwidth consumption. */
    for(int k = 0; k < num_qos_levels; k++)
    {
1139 1140
        s->last_qos_status[rc_index][k] = s->qos_status[k];
        s->last_qos_data[rc_index][k] = s->qos_data[k];
1141 1142 1143
        s->qos_status[k] = Q_ACTIVE;
        s->qos_data[k] = 0;
    }
1144 1145 1146
        
    s->rc_index++;
    assert(s->rc_index < num_rc_windows); 
1147

1148
/*    if(s->router_id == 0)
1149 1150 1151 1152
    {
       fprintf(dragonfly_term_bw_log, "\n %d %lf %lf ", s->terminal_id, tw_now(lp), s->busy_time_sample);
       s->busy_time_sample = 0;
    }
1153
  */  
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    if(tw_now(lp) > max_qos_monitor)
        return;

    terminal_custom_message * m; 
    tw_stime bw_ts = bw_reset_window + codes_local_latency(lp);
    tw_event * e = model_net_method_event_new(lp->gid, bw_ts, lp, DRAGONFLY_CUSTOM,
            (void**)&m, NULL); 
    m->type = T_BANDWIDTH;
    m->magic = terminal_magic_num; 
    tw_event_send(e);
}
1165

1166 1167 1168
void issue_rtr_bw_monitor_event_rc(router_state * s, tw_bf * bf, terminal_custom_message * msg, tw_lp * lp)
{
    int num_qos_levels = s->params->num_qos_levels; 
1169 1170 1171 1172
    int rc_index = 0;
    if(s->rc_index > 0)
        rc_index = s->rc_index - 1;

1173 1174 1175 1176
    for(int j = 0; j < s->params->radix; j++)
    {
        for(int k = 0; k < num_qos_levels; k++)  
        {
1177 1178 1179 1180
            s->qos_status[j][k] = s->last_qos_status[rc_index][j][k];
            s->qos_data[j][k] = s->last_qos_data[rc_index][j][k];
            s->last_qos_status[rc_index][j][k] = 0;
            s->last_qos_data[rc_index][j][k] = 0;
1181 1182
        }
    }
1183 1184 1185 1186 1187
    s->rc_index--;

    if(bf->c1)
        return;

1188 1189 1190 1191 1192 1193
    codes_local_latency_reverse(lp);
}
void issue_rtr_bw_monitor_event(router_state * s, tw_bf * bf, terminal_custom_message * msg, tw_lp * lp)
{

    int num_qos_levels = s->params->num_qos_levels;
1194
    int rc_index = s->rc_index;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    for(int j = 0; j < s->params->radix; j++)
    {
        for(int k = 0; k < num_qos_levels; k++)
        {
            s->last_qos_status[rc_index][j][k] = s->qos_status[j][k];
            s->last_qos_data[rc_index][j][k] = s->qos_data[j][k];
            assert(s->rc_index < num_rc_windows);
        }
    }
            
    s->rc_index++;
1207 1208 1209 1210 1211
    for(int j = 0; j < s->params->radix; j++)
    {
        for(int k = 0; k < num_qos_levels; k++)
        {
            int bw_consumed = get_rtr_bandwidth_consumption(s, k, j);
1212
            if(s->router_id == 0)
1213 1214 1215 1216
            {
                fprintf(dragonfly_rtr_bw_log, "\n %d %f %d %d %d %d %d %f", s->router_id, tw_now(lp), j, k, bw_consumed, s->qos_status[j][k], s->qos_data[j][k], s->busy_time_sample[j]);
            
            }
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        }
    }
    for(int j = 0; j < s->params->radix; j++)
    {
        /* Reset the qos status and bandwidth consumption. */
        for(int k = 0; k < num_qos_levels; k++)
        {
            s->qos_status[j][k] = Q_ACTIVE;
            s->qos_data[j][k] = 0;
        }
1227
        //s->busy_time_sample[j] = 0;
1228 1229 1230
    }
    
    if(tw_now(lp) > max_qos_monitor)
1231 1232
    {
        bf->c1 = 1;
1233
        return;
1234
    }
1235 1236 1237 1238 1239 1240 1241 1242
    tw_stime bw_ts = bw_reset_window + codes_local_latency(lp);
    terminal_custom_message *m;
    tw_event * e = model_net_method_event_new(lp->gid, bw_ts, lp,
            DRAGONFLY_CUSTOM_ROUTER, (void**)&m, NULL);
    m->type = R_BANDWIDTH;
    m->magic = router_magic_num;
    tw_event_send(e);
}
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

void reset_rtr_bw_counters(router_state * s,
		tw_bf * bf, 
		terminal_custom_message * msg, 
        tw_lp * lp)
{
    if(msg->type == R_BANDWIDTH && s->rc_index > 0)
    {
        s->rc_index = 0;
        for(int k = 0; k < num_rc_windows; k++)
        {   
            for(int i = 0; i < s->params->radix; i++)
            {
                for(int j = 0; j < s->params->num_qos_levels; j++)
            {
                s->last_qos_status[k][i][j] = 0;
                s->last_qos_data[k][i][j] = 0;
            }
            }
        }
    }
}
void reset_bw_counters(terminal_state * s,
		tw_bf * bf, 
		terminal_custom_message * msg, 
        tw_lp * lp)
{
   if(msg->type == T_BANDWIDTH && s->rc_index > 0)
   {
        s->rc_index = 0; 
        for(int i = 0; i < num_rc_windows; i++)
        {
            for(int j = 0; j < s->params->num_qos_levels; j++)
            {
                s->last_qos_status[i][j] = 0;
                s->last_qos_data[i][j] = 0;
            }
        }
   }
}
1283 1284
/* initialize a dragonfly compute node terminal */
void 
1285
terminal_custom_init( terminal_state * s, 
1286 1287 1288 1289
	       tw_lp * lp )
{
    s->packet_gen = 0;
    s->packet_fin = 0;
1290
    s->is_monitoring_bw = 0;
1291

1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

1310
   int num_qos_levels = s->params->num_qos_levels;
1311 1312 1313
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM_TERM,
           s->anno, 0);

1314
   s->terminal_id = codes_mapping_get_lp_relative_id(lp->gid, 0, 0);
1315
   s->router_id=(int)s->terminal_id / (s->params->num_cn);
1316 1317
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;
1318
   s->min_latency = INT_MAX;
1319
   s->max_latency = 0;  
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
   s->finished_msgs = 0;
   s->finished_chunks = 0;
   s->finished_packets = 0;
   s->total_time = 0.0;
   s->total_msg_size = 0;

   s->busy_time = 0.0;

   s->fwd_events = 0;
   s->rev_events = 0;

   rc_stack_create(&s->st);
1333
   s->vc_occupancy = (int*)calloc(num_qos_levels, sizeof(int));
1334
   s->last_buf_full = 0.0;
1335

1336 1337 1338 1339
   s->terminal_length = (int*)calloc(num_qos_levels, sizeof(int));

   /* Whether the virtual channel group is active or over-bw*/
   s->qos_status = (int*)calloc(num_qos_levels, sizeof(int));
1340
   
1341 1342 1343
   /* How much data has been transmitted on the virtual channel group within
    * the window */
   s->qos_data = (int*)calloc(num_qos_levels, sizeof(int));
1344

1345 1346 1347 1348 1349 1350 1351 1352
   /* for reverse handlers */
   s->last_qos_status = (int**)calloc(num_rc_windows, sizeof(int*));
   s->last_qos_data = (int**)calloc(num_rc_windows, sizeof(int*));
   for(int i = 0; i < num_rc_windows; i++)
   {
        s->last_qos_status[i] = (int*)calloc(num_qos_levels, sizeof(int));
        s->last_qos_data[i] = (int*)calloc(num_qos_levels, sizeof(int));
   }
1353 1354 1355 1356 1357 1358
   for(i = 0; i < num_qos_levels; i++)
   {
       s->qos_data[i] = 0;
       s->qos_status[i] = Q_ACTIVE;
       s->vc_occupancy[i]=0;
   }
1359

1360
   s->last_qos_lvl = 0;
1361
   s->rank_tbl = NULL;
1362
   s->terminal_msgs = 
1363
       (terminal_custom_message_list**)calloc(num_qos_levels, sizeof(terminal_custom_message_list*));
1364
   s->terminal_msgs_tail = 
1365 1366 1367 1368 1369 1370 1371
       (terminal_custom_message_list**)calloc(num_qos_levels, sizeof(terminal_custom_message_list*));

   for(int i = 0; i < num_qos_levels; i++)
   {
        s->terminal_msgs[i] = NULL;
        s->terminal_msgs_tail[i] = NULL;
   }
1372 1373 1374
   s->in_send_loop = 0;
   s->issueIdle = 0;

1375
    /*if(s->terminal_id == 0)
1376 1377 1378 1379 1380
    {
        char term_bw_log[64];
        sprintf(term_bw_log, "terminal-bw-tracker");
        dragonfly_term_bw_log = fopen(term_bw_log, "w");
        fprintf(dragonfly_term_bw_log, "\n term-id time-stamp port-id busy-time");
1381
    }*/
1382 1383 1384 1385 1386
   return;
}

/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
1387
void router_custom_setup(router_state * r, tw_lp * lp)
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
{
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

1406
    num_routers_per_mgrp = codes_mapping_get_lp_count (lp_group_name, 1, "modelnet_dragonfly_custom_router",
1407 1408 1409 1410 1411 1412 1413
            NULL, 0);
    int num_grp_reps = codes_mapping_get_group_reps(lp_group_name);
    if(p->total_routers != num_grp_reps * num_routers_per_mgrp)
        tw_error(TW_LOC, "\n Config error: num_routers specified %d total routers computed in the network %d "
                "does not match with repetitions * dragonfly_router %d  ",
                p->num_routers, p->total_routers, num_grp_reps * num_routers_per_mgrp);

1414
   r->router_id = codes_mapping_get_lp_relative_id(lp->gid, 0, 0);
1415
   r->group_id=r->router_id/p->num_routers;
1416 1417 1418 1419 1420
   
   if(r->router_id == 0)
   {
        char rtr_bw_log[64];
        sprintf(rtr_bw_log, "router-bw-tracker");
1421
        
1422
        dragonfly_rtr_bw_log = fopen(rtr_bw_log, "w");
1423 1424 1425
       
        if(dragonfly_rtr_bw_log != NULL)
            fprintf(dragonfly_rtr_bw_log, "\n router-id time-stamp port-id qos-level bw-consumed qos-status qos-data busy-time");
1426
   }
1427
   //printf("\n Local router id %d global id %d ", r->router_id, lp->gid);
1428

1429
   r->rc_index = 0;
1430
   r->is_monitoring_bw = 0;
1431 1432
   r->fwd_events = 0;
   r->rev_events = 0;
1433 1434
   r->ross_rsample.fwd_events = 0;
   r->ross_rsample.rev_events = 0;
1435

1436

1437 1438
   int num_qos_levels = p->num_qos_levels;

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
   /* history window for bandwidth reverse computation */
   r->last_qos_status = (int***)calloc(num_rc_windows, sizeof(int**));
   r->last_qos_data = (int***)calloc(num_rc_windows, sizeof(int**));
   for(int k = 0; k < num_rc_windows; k++)
   {
        r->last_qos_status[k] = (int**)calloc(p->radix, sizeof(int*));
        r->last_qos_data[k] = (int**)calloc(p->radix, sizeof(int*));
        for(int j = 0; j < p->radix; j++)
        {
            r->last_qos_status[k][j] = (int*)calloc(num_qos_levels, sizeof(int));
            r->last_qos_data[k][j] = (int*)calloc(num_qos_levels, sizeof(int));
            for(int i = 0; i < num_qos_levels; i++)
            {
                r->last_qos_status[k][j][i] = 0;
                r->last_qos_data[k][j][i] = 0;
            }
        }
   }
1457 1458 1459 1460 1461 1462 1463
   r->global_channel = (int*)calloc(p->num_global_channels, sizeof(int));
   r->next_output_available_time = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
   r->link_traffic = (int64_t*)calloc(p->radix, sizeof(int64_t));
   r->link_traffic_sample = (int64_t*)calloc(p->radix, sizeof(int64_t));
   r->cur_hist_num = (int*)calloc(p->radix, sizeof(int));
   r->prev_hist_num = (int*)calloc(p->radix, sizeof(int));
1464
  
1465
   r->last_sent_chan = (int*) calloc(p->num_router_rows, sizeof(int));
1466
   r->vc_occupancy = (int**)calloc(p->radix , sizeof(int*));
1467
   r->in_send_loop = (int*)calloc(p->radix, sizeof(int));
1468 1469 1470
   r->qos_data = (int**)calloc(p->radix, sizeof(int*));
   r->last_qos_lvl = (int*)calloc(p->radix, sizeof(int));
   r->qos_status = (int**)calloc(p->radix, sizeof(int*));
1471
   r->pending_msgs = 
1472
    (terminal_custom_message_list***)calloc((p->radix), sizeof(terminal_custom_message_list**));
1473
   r->pending_msgs_tail = 
1474
    (terminal_custom_message_list***)calloc((p->radix), sizeof(terminal_custom_message_list**));
1475
   r->queued_msgs = 
1476
    (terminal_custom_message_list***)calloc(p->radix, sizeof(terminal_custom_message_list**));
1477
   r->queued_msgs_tail = 
1478 1479
    (terminal_custom_message_list***)calloc(p->radix, sizeof(terminal_custom_message_list**));
   r->queued_count = (int*)calloc(p->radix, sizeof(int));
1480
   r->last_buf_full = (tw_stime*)calloc(p->radix, sizeof(tw_stime*));
1481 1482
   r->busy_time = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
   r->busy_time_sample = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
1483

1484 1485 1486 1487 1488
   /* set up for ROSS stats sampling */
   r->link_traffic_ross_sample = (int64_t*)calloc(p->radix, sizeof(int64_t));
   r->busy_time_ross_sample = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
   if (g_st_model_stats)
       lp->model_types->mstat_sz = sizeof(tw_lpid) + (sizeof(int64_t) + sizeof(tw_stime)) * p->radix;
1489
   if (g_st_use_analysis_lps && g_st_model_stats)
1490 1491 1492 1493
       lp->model_types->sample_struct_sz = sizeof(struct dfly_router_sample) + (sizeof(tw_stime) + sizeof(int64_t)) * p->radix;
   r->ross_rsample.busy_time = (tw_stime*)calloc(p->radix, sizeof(tw_stime));
   r->ross_rsample.link_traffic_sample = (int64_t*)calloc(p->radix, sizeof(int64_t));

1494
   rc_stack_create(&r->st);
1495 1496 1497 1498

   for(int i = 0; i < p->num_router_rows; i++)
       r->last_sent_chan[i] = 0;

1499 1500 1501
   for(int i=0; i < p->radix; i++)
    {
       // Set credit & router occupancy
1502
    r->last_buf_full[i] = 0.0;
1503 1504 1505
    r->busy_time[i] = 0.0;
    r->busy_time_sample[i] = 0.0;
	r->next_output_available_time[i]=0;
1506
    r->last_qos_lvl[i] = 0;
1507 1508 1509 1510 1511 1512 1513
	r->cur_hist_start_time[i] = 0;
    r->link_traffic[i]=0;
    r->link_traffic_sample[i] = 0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
    r->queued_count[i] = 0;    
    r->in_send_loop[i] = 0;
1514
    r->vc_occupancy[i] = (int*)calloc(p->num_vcs, sizeof(int));
1515
//    printf("\n Number of vcs %d for radix %d ", p->num_vcs, p->radix);
1516
    r->pending_msgs[i] = (terminal_custom_message_list**)calloc(p->num_vcs,