dragonfly.c 78.5 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21 22 23

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0
24
#define MAX_GEN_PACKETS 2000000
25

26 27 28
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
29
#define DRAGONFLY_COLLECTIVE_DEBUG 0
30 31 32
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
33
#define WINDOW_LENGTH 0
34

35
// debugging parameters
36
#define TRACK 10
37
#define PRINT_ROUTER_TABLE 1
38
#define DEBUG 0
39
#define USE_DIRECT_SCHEME 0
40

41 42 43
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

44
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
45

46 47
static double maxd(double a, double b) { return a < b ? b : a; }

48
/* minimal and non-minimal packet counts for adaptive routing*/
49
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
50

51 52 53 54 55 56
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
57 58

/* global variables for codes mapping */
59
static char lp_group_name[MAX_NAME_LENGTH];
60 61
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

62 63 64 65 66 67
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

68 69 70 71 72 73 74
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
75

76 77 78 79 80 81 82
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
83

84 85 86 87
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
106
    int total_terminals;
107
    int num_global_channels;
108 109 110 111
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
112 113
};

114 115 116 117 118 119 120 121
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
122
   uint64_t packet_counter;
123 124

   // Dragonfly specific parameters
125 126
   unsigned int router_id;
   unsigned int terminal_id;
127 128 129

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
130
   int num_vcs;
131 132
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
133 134 135
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
136 137 138 139
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
164 165 166

   const char * anno;
   const dragonfly_param *params;
167 168

   //struct qhash_head hash_link;
169
};
170

171 172 173 174 175
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
176
  T_SEND,
177
  T_BUFFER,
178 179
  R_SEND,
  R_ARRIVE,
180 181 182 183
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
207 208
    MINIMAL = 0,
    NON_MINIMAL,
209 210
    ADAPTIVE,
    PROG_ADAPTIVE
211 212 213 214 215 216
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
217 218
  
   int* global_channel; 
219
   
220 221
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
222
   tw_stime* cur_hist_start_time;
223 224 225 226 227
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
228
   
229 230
   int** vc_occupancy;
   int* link_traffic;
231 232 233

   const char * anno;
   const dragonfly_param *params;
234 235 236

   int* prev_hist_num;
   int* cur_hist_num;
237 238 239 240 241 242
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
243
static tw_stime         max_collective = 0;
244 245 246 247 248


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

249 250 251 252 253 254 255 256 257 258 259 260 261 262
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
263

264 265
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
266
{
267 268
	   return sizeof(terminal_message);
}
269

270 271 272 273 274 275 276 277 278 279 280 281
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
282 283
}

284 285 286 287 288 289 290 291 292 293 294 295 296
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
297

298 299 300 301 302 303 304 305 306 307
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
308 309 310
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
311
    }
312
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
    msg->packet_size = cur_msg->packet_size;
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
387 388 389
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
390

391 392 393 394 395 396 397 398
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

399
    p->num_vcs = 3;
400 401

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
402
    if(!p->local_vc_size) {
403 404 405 406 407
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
408
    if(!p->global_vc_size) {
409 410 411 412 413
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
414
    if(!p->cn_vc_size) {
415 416 417 418 419
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
420
    if(!p->chunk_size) {
421
        p->chunk_size = 512;
422
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
423 424 425
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
426
    if(!p->local_bandwidth) {
427 428 429 430 431
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
432
    if(!p->global_bandwidth) {
433 434 435 436 437
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
438
    if(!p->cn_bandwidth) {
439 440 441 442
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

443 444
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
445
            MAX_NAME_LENGTH);
446 447
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
448 449
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
450 451 452 453 454
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
455 456 457 458
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
459
        routing = -1;
460 461 462 463 464 465
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
466
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
467
    p->total_routers = p->num_groups * p->num_routers;
468
    p->total_terminals = p->total_routers * p->num_cn;
469 470 471 472 473 474 475
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
476
    
477 478 479 480
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
481 482 483

}

484 485 486 487
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
488
    all_params = malloc(num_params * sizeof(*all_params));
489 490

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
491
        const char * anno = anno_map->annotations[i].ptr;
492 493 494 495 496
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
497 498 499 500 501 502 503
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
504
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
505 506 507 508 509

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
510
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
511 512 513
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
514
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
515
    }
516

517 518
   /* print statistics */
   if(!g_tw_mynode)
519
   {	
520
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg time %lf \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000, avg_time);
521
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
522
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
523 524
 
  }
525 526
   return;
}
527

528 529 530
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
531 532 533 534 535
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
   s->in_send_loop = 0;

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
644
{
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
687
   for(int i=0; i < p->radix; i++)
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
707
        for(int j = 0; j < p->num_vcs; j++) {
708 709 710 711 712 713 714 715 716 717 718 719 720 721
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
722
       for(int i=0; i < p->num_global_channels; i++)
723 724 725 726 727 728 729 730 731 732 733 734 735
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
736 737 738
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
767 768 769 770 771 772 773 774 775 776
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
777
{
778 779 780 781 782
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

783 784 785 786
    xfer_to_nic_time = codes_local_latency(sender); 
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
787 788
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
789 790 791
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
    msg->sender_lp=req->src_lp;
792 793 794 795
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
796 797
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
798
    msg->magic = terminal_magic_num;
799 800 801

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
802
	if(req->remote_event_size > 0)
803
	 {
804 805 806
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
807
	}
808
	if(req->self_event_size > 0)
809
	{
810 811 812
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
813 814
	}
     }
815
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
816
    tw_event_send(e_new);
817
    return xfer_to_nic_time;
818 819 820 821 822 823 824 825 826
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

827 828 829
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
830 831
		    int num_routers,
                    int total_groups)
832
{
833 834 835 836 837 838 839
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
840 841 842
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
843
  
844 845
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
846
  
847 848
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
849
  
850
  offset=(offset - 1) % (half_channel * num_routers);
851 852 853 854 855 856 857 858 859 860

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
861
#endif
862 863 864
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
865 866
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
867 868 869 870
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

871
  int dest = 0,  type = R_BUFFER;
872
  int is_terminal = 0;
873

874
  const dragonfly_param *p = s->params;
875 876 877 878 879 880 881 882 883 884 885 886 887
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

888
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
889
	
890 891 892 893 894 895 896 897 898 899 900 901 902 903
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
904
    buf_msg->vc_index = msg->saved_vc;
905 906 907 908
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
909

910 911
  tw_event_send(buf_e);
  return;
912 913
}

914
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
915
{
916 917 918
   term_rev_ecount++;
   term_ecount--;

919 920
   tw_rand_reverse_unif(lp->rng);

921 922 923
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
924

925
   if(!num_chunks)
926
       num_chunks = 1;
927

928 929 930 931 932 933 934 935 936 937 938
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
        tw_rand_reverse_unif(lp->rng);
        s->in_send_loop = 0;
    }
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
939 940 941 942
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
943

944
/* generates packet at the current dragonfly compute node */
945 946 947
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
948

949 950 951 952 953
  tw_stime ts;
  tw_lpid dest_terminal_id;
  dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
      msg->final_dest_gid);
  msg->dest_terminal_id = dest_terminal_id;
954

955
  const dragonfly_param *p = s->params;
956

957
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
958
  model_net_method_idle_event(codes_local_latency(lp), 0, lp);
959

960 961 962
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size) num_chunks++;
963 964 965 966

  if(!num_chunks)
    num_chunks = 1;

967
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
968 969 970 971 972
  msg->travel_start_time = tw_now(lp);
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
973

974 975 976 977 978
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
994

995 996 997 998
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);
  }
999

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
  if(s->in_send_loop == 0) {
    bf->c5 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    s->in_send_loop = 1;
    tw_event_send(e);
  }
1011

1012 1013 1014 1015 1016 1017 1018 1019
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
1020
	  stat->max_event_size = total_event_size;
1021

1022 1023 1024
  return;
}

1025 1026
void packet_send_rc(terminal_state * s, tw_bf * bf, terminal_message * msg,
        tw_lp * lp)
1027
{
1028 1029
      term_ecount--;
      term_rev_ecount++;
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
      if(bf->c1) {
        s->in_send_loop = 1;
        return;
      }
      
      s->terminal_available_time = msg->saved_available_time;
      tw_rand_reverse_unif(lp->rng);
      if(bf->c2) {
        codes_local_latency_reverse(lp);
      }
     
      s->packet_counter--;
      s->vc_occupancy[0] -= s->params->chunk_size;
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
      create_prepend_to_terminal_message_list(s->terminal_msgs,
          s->terminal_msgs_tail, 0, msg);
      if(bf->c3) {
        tw_rand_reverse_unif(lp->rng);
      }
      if(bf->c4) {
        s->in_send_loop = 1;
      }
    return;
}
/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  
  term_ecount++;
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
  terminal_message_list* cur_entry = s->terminal_msgs[0];

  if(s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size 
      || cur_entry == NULL) {
    bf->c1 = 1;
    s->in_send_loop = 0;
    //printf("[%d] Skipping send %d %d\n", lp->gid, cur_entry == NULL, 
    //  (s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size));
    return;
  }

1076
//  printf("\n Packet %ld sent at time %lf ", cur_entry->msg.packet_ID, tw_now(lp));
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  msg->saved_available_time = s->terminal_available_time;
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
  s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
  s->terminal_available_time += ts;

  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
      &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
      s->router_id, 0, &router_id);
  // we are sending an event to the router, so no method_event here
  e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);
  m = tw_event_data(e);
  memcpy(m, &cur_entry->msg, sizeof(terminal_message));
  if (m->remote_event_size_bytes){
    memcpy(model_net_method_get_edata(DRAGONFLY, m), cur_entry->event_data,
        m->remote_event_size_bytes);
  }
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
  m->origin_router_id = s->router_id;
  m->type = R_ARRIVE;
  m->src_terminal_id = lp->gid;
  m->vc_index = 0;
  m->last_hop = TERMINAL;
  m->intm_group_id = -1;
  m->magic = router_magic_num;
  m->path_type = -1;
  m->local_event_size_bytes = 0;
  m->local_id = s->terminal_id;
  tw_event_send(e);

  int num_chunks = cur_entry->msg.packet_size/s->params->chunk_size;
  if(cur_entry->msg.packet_size % s->params->chunk_size)
    num_chunks++;

1112 1113 1114
  if(!num_chunks)
      num_chunks = 1;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
  if(cur_entry->msg.chunk_id == num_chunks - 1 && 
      (cur_entry->msg.local_event_size_bytes > 0)) {
    bf->c2 = 1;
    ts = codes_local_latency(lp); 
    tw_event *e_new = tw_event_new(cur_entry->msg.sender_lp, ts, lp);
    terminal_message* m_new = tw_event_data(e_new);
    void *local_event = (char*)cur_entry->event_data + 
      cur_entry->msg.remote_event_size_bytes;
    memcpy(m_new, local_event, cur_entry->msg.local_event_size_bytes);
    tw_event_send(e_new);
  }
  s->packet_counter++;
  s->vc_occupancy[0] += s->params->chunk_size;
  cur_entry = return_head(s->terminal_msgs, s->terminal_msgs_tail, 0); 
  copy_terminal_list_entry(cur_entry, msg);
  delete_terminal_message_list(cur_entry);

  cur_entry = s->terminal_msgs[0];
  
  if(cur_entry != NULL &&
    s->vc_occupancy[0] + s->params->chunk_size <= s->params->cn_vc_size) {
    bf->c3 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    tw_event_send(e);
  } else {
    bf->c4 = 1;
    s->in_send_loop = 0;
  }
  return;
1149
}
1150 1151

void packet_arrive_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
1152
{
1153 1154
      term_ecount--;
      term_rev_ecount++;
1155

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
      completed_packets--;
      if(msg->path_type == MINIMAL)
        minimal_count--;
      if(msg->path_type == NON_MINIMAL)
        nonmin_count--;

      if(bf->c2) {
        mn_stats* stat;
        stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
        stat->recv_count--;
        stat->recv_bytes -= msg->packet_size;
        stat->recv_time -= tw_now(lp) - msg->travel_start_time;
        N_finished_packets--;
        dragonfly_total_time -= (tw_now(lp) - msg->travel_start_time);
        total_hops -= msg->my_N_hop;
        if(bf->c3)
          dragonfly_max_latency = msg->saved_available_time;

        if(bf->c4)
        {
           int net_id = model_net_get_id(LP_METHOD_NM);
1177
           model_net_event_rc2(lp, &msg->event_rc);
1178

1179 1180 1181 1182
        }
      }
      msg->my_N_hop--;
      tw_rand_reverse_unif(lp->rng);
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
      return;
}
/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {

  term_ecount++;

  bf->c2 = 0;
  bf->c3 = 0;
  bf->c4 = 0;
1195

1196 1197 1198
  int num_chunks = msg->packet_size / s->params->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
    num_chunks++;
1199
  if(!num_chunks)
1200
        num_chunks = 1;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

  completed_packets++;

  if(msg->path_type == MINIMAL)
    minimal_count++;

  if(msg->path_type == NON_MINIMAL)
    nonmin_count++;

  if(msg->path_type != MINIMAL && msg->path_type != NON_MINIMAL)
    printf("\n Wrong message path type %d ", msg->path_type);
1212

1213
#if DEBUG == 1
1214 1215 1216 1217
  if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
  {
    printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
        tw_now(lp), (int)lp->gid, msg->packet_ID);
1218

1219 1220
    printf("travel start time is %f\n",
        msg->travel_start_time);
1221

1222 1223
    printf("My hop now is %d\n",msg->my_N_hop);
  }
1224 1225 1226 1227
#endif

   tw_stime ts;

1228
   msg->my_N_hop++;
1229 1230
  if(msg->chunk_id == num_chunks-1)
  {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    bf->c2 = 1;
    mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
    stat->recv_count++;
    stat->recv_bytes += msg->packet_size;
    stat->recv_time += tw_now(lp) - msg->travel_start_time;

    N_finished_packets++;
    dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
    total_hops += msg->my_N_hop;

    if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) {
      bf->c3 = 1;
      msg->saved_available_time = dragonfly_max_latency;
      dragonfly_max_latency = tw_now( lp ) - msg->travel_start_time;
    }
1246 1247
	if(msg->remote_event_size_bytes)
	{
1248
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
1249
            ts = g_tw_lookahead + bytes_to_ns(msg->remote_event_size_bytes, (1/s->params->cn_bandwidth));
1250
            if (msg->is_pull){
1251
                bf->c4 = 0;
1252 1253 1254 1255
                struct codes_mctx mc_dst =
                    codes_mctx_set_global_direct(msg->sender_mn_lp);
                struct codes_mctx mc_src =
                    codes_mctx_set_global_direct(lp->gid);
1256
                int net_id = model_net_get_id(LP_METHOD_NM);
1257 1258
                msg->event_rc = model_net_event_mctx(net_id, &mc_src, &mc_dst,
                        msg->category, msg->sender_lp, msg->pull_size, ts,
1259
                        msg->remote_event_size_bytes, tmp_ptr, 0, NULL, lp);
1260 1261
            }
            else{
1262 1263 1264
                tw_event * e = tw_event_new(msg->final_dest_gid, ts, lp);
                void * m_remote = tw_event_data(e);
                memcpy(m_remote, tmp_ptr, msg->remote_event_size_bytes);
1265 1266
                tw_event_send(e); 
            }
1267 1268 1269
	}
  }

1270 1271
    // NIC aggregation - should this be a separate function?
    // Trigger an event on receiving server
1272

1273 1274
  ts = g_tw_lookahead + s->params->credit_delay + tw_rand_unif(lp->rng);
  
1275 1276
  if(msg->intm_lp_id == TRACK)
	printf("\n terminal sending credit at chan %d ", msg->saved_vc);
1277
  
1278 1279 1280 1281
  // no method_event here - message going to router
  tw_event * buf_e;
  terminal_message * buf_msg;
  buf_e = tw_event_new(msg->intm_lp_id, ts, lp);
1282
  buf_msg = tw_event_data(buf_e);
1283
  buf_msg->magic = router_magic_num;
1284 1285 1286
  buf_msg->vc_index = msg->vc_index;
  buf_msg->output_chan = msg->output_chan;
  buf_msg->type = R_BUFFER;
1287 1288 1289 1290 1291
  tw_event_send(buf_e);

  return;
}

1292
/* collective operation for the torus network */
1293
void dragonfly_collective(char const * category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
1294 1295 1296 1297 1298 1299 1300
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

1301 1302 1303 1304
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
1305

1306
    xfer_to_nic_time = codes_local_latency(sender);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
1346
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
1375 1376 1377 1378 1379
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1380 1381
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
1382 1383
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

1414 1415 1416
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1417
                s->anno, 0);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
1436
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
1437 1438
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),