dragonfly.c 88.1 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21
#include "codes/quickhash.h"
22
#include "codes/rc-stack.h"
23 24 25 26

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

27 28 29
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
30
#define DRAGONFLY_COLLECTIVE_DEBUG 0
31 32 33
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
34
#define WINDOW_LENGTH 0
35
#define DFLY_HASH_TABLE_SIZE 65536
36

37
// debugging parameters
38 39
#define TRACK -1
#define TRACK_MSG -1
40
#define PRINT_ROUTER_TABLE 1
Misbah Mubarak's avatar
Misbah Mubarak committed
41
#define DEBUG 0
42
#define USE_DIRECT_SCHEME 1
43

44 45 46
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

47
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
48

49 50
static double maxd(double a, double b) { return a < b ? b : a; }

51
/* minimal and non-minimal packet counts for adaptive routing*/
52
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
53

54 55 56 57 58 59
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
60 61

/* global variables for codes mapping */
62
static char lp_group_name[MAX_NAME_LENGTH];
63 64
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

65 66 67 68 69 70
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

71 72 73 74 75 76 77
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
78

79 80 81 82 83 84 85
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
86

87 88 89 90
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
109
    int total_terminals;
110
    int num_global_channels;
111 112 113 114
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
115 116
};

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

132 133 134 135 136 137 138 139
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
140
   uint64_t packet_counter;
141 142

   // Dragonfly specific parameters
143 144
   unsigned int router_id;
   unsigned int terminal_id;
145 146 147

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
148
   int num_vcs;
149 150
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
151 152 153
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
154 155 156 157
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

179
   struct rc_stack * st;
180 181
   int issueIdle;
   int terminal_length;
182

183 184 185
   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
186 187 188

   const char * anno;
   const dragonfly_param *params;
189

190 191 192
   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;

193 194 195
   tw_stime   total_msg_time;
   long total_msg_size;
   long finished_msgs;
196
   long finished_packets;
197

198
   char output_buf[512];
199
};
200

201 202 203 204 205
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
206
  T_SEND,
207
  T_BUFFER,
208 209
  R_SEND,
  R_ARRIVE,
210 211 212 213
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
237 238
    MINIMAL = 0,
    NON_MINIMAL,
239 240
    ADAPTIVE,
    PROG_ADAPTIVE
241 242 243 244 245 246
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
247 248
  
   int* global_channel; 
249
   
250 251
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
252
   tw_stime* cur_hist_start_time;
253 254 255 256 257
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
258
   
259 260
   int** vc_occupancy;
   int* link_traffic;
261 262 263

   const char * anno;
   const dragonfly_param *params;
264 265 266

   int* prev_hist_num;
   int* cur_hist_num;
267 268 269 270
};

static short routing = MINIMAL;

271 272
static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
273
static tw_stime         max_collective = 0;
274

275

276 277 278
static long long       total_hops = 0;
static long long       N_finished_packets = 0;

279 280 281 282 283 284 285 286 287 288 289 290 291 292
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
293 294 295 296 297 298 299 300 301 302 303 304 305 306
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
307

308 309
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
310
{
311 312
	   return sizeof(terminal_message);
}
313

314 315 316 317 318 319
static void free_tmp(void * ptr)
{
    struct dfly_qhash_entry * dfly = ptr; 
    free(dfly->remote_event_data);
    free(dfly);
}
320 321 322 323 324 325 326 327 328 329 330 331
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
347

348 349 350 351 352 353 354 355 356 357
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
358 359 360
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
361
    }
362
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
396 397
}

398 399 400 401 402 403 404
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
405
    msg->msg_start_time = msg->msg_start_time;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
425 426
    msg->sender_mn_lp = cur_msg->sender_mn_lp;
    msg->total_size = cur_msg->total_size;
427
    msg->packet_size = cur_msg->packet_size;
428
    msg->message_id = cur_msg->message_id;
429 430 431 432 433 434 435 436 437 438 439 440
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
441 442 443
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
444

445 446 447 448 449 450 451 452
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

453
    p->num_vcs = 3;
454 455

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
456
    if(!p->local_vc_size) {
457 458 459 460 461
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
462
    if(!p->global_vc_size) {
463 464 465 466 467
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
468
    if(!p->cn_vc_size) {
469 470 471 472 473
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
474
    if(!p->chunk_size) {
475
        p->chunk_size = 512;
476
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
477 478 479
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
480
    if(!p->local_bandwidth) {
481 482 483 484 485
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
486
    if(!p->global_bandwidth) {
487 488 489 490 491
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
492
    if(!p->cn_bandwidth) {
493 494 495 496
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

497 498
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
499
            MAX_NAME_LENGTH);
500 501
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
502 503
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
504 505 506 507 508
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
509 510 511 512
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
513
        routing = -1;
514 515 516 517 518 519
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
520
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
521
    p->total_routers = p->num_groups * p->num_routers;
522
    p->total_terminals = p->total_routers * p->num_cn;
523 524 525 526 527 528 529
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
530
    
531 532 533 534
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
535 536 537

}

538 539 540 541
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
542
    all_params = malloc(num_params * sizeof(*all_params));
543 544

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
545
        const char * anno = anno_map->annotations[i].ptr;
546 547 548 549 550
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
551 552 553 554 555 556 557
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
558
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
559 560 561 562 563

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
564
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
565 566 567
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
568
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
569
    }
570

571 572
   /* print statistics */
   if(!g_tw_mynode)
573
   {	
574
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg time %lf \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000, avg_time);
575
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
576
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
577 578
 
  }
579 580
   return;
}
581

582 583 584
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
585 586 587 588 589
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;
673
   
674 675 676
   s->finished_msgs = 0;
   s->total_msg_time = 0.0;
   s->total_msg_size = 0;
677

678
   rc_stack_create(&s->st);
679 680 681 682 683 684 685 686
   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

687 688 689 690 691
   s->rank_tbl = qhash_init(dragonfly_rank_hash_compare, quickhash_64bit_hash, DFLY_HASH_TABLE_SIZE);

   if(!s->rank_tbl)
       tw_error(TW_LOC, "\n Hash table not initialized! ");

692 693 694 695 696 697
   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
698
   s->terminal_length = 0;
699
   s->in_send_loop = 0;
700
   s->issueIdle = 0;
701 702 703 704 705 706 707 708 709

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
710
{
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
753
   for(int i=0; i < p->radix; i++)
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
773
        for(int j = 0; j < p->num_vcs; j++) {
774 775 776 777 778 779 780 781 782
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
783
//   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
784 785 786 787
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
788
       for(int i=0; i < p->num_global_channels; i++)
789 790 791 792 793 794 795 796 797 798 799 800 801
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
802 803 804
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
833 834 835 836 837 838 839 840 841 842
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
843
{
844 845 846 847 848
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

849 850 851
    xfer_to_nic_time = codes_local_latency(sender); 
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
852 853
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
854 855
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
856
    msg->total_size = req->msg_size;
857
    msg->sender_lp=req->src_lp;
858
    msg->sender_mn_lp = sender->gid;
859
    msg->packet_size = packet_size;
860
    msg->travel_start_time = tw_now(sender);
861 862 863
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
864
    msg->dest_terminal_id = req->dest_mn_lp;
865
    msg->message_id = req->msg_id;
866 867
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
868
    msg->magic = terminal_magic_num; 
869 870
    msg->msg_start_time = req->msg_start_time;

871 872
    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
873
	if(req->remote_event_size > 0)
874
	 {
875 876 877
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
878
	}
879
	if(req->self_event_size > 0)
880
	{
881 882 883
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
884 885
	}
     }
886
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
887
    tw_event_send(e_new);
888
    return xfer_to_nic_time;
889 890 891 892 893 894 895 896 897
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

898 899 900
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
901 902
		    int num_routers,
                    int total_groups)
903
{
904 905 906 907 908 909 910
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
911 912 913
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
914
  
915 916
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
917
  
918 919
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
920
  
921
  offset=(offset - 1) % (half_channel * num_routers);
922 923 924 925 926 927 928 929 930 931

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
932
#endif
933 934 935
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
936 937
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
938 939 940 941
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

942
  int dest = 0,  type = R_BUFFER;
943
  int is_terminal = 0;
944

945
  const dragonfly_param *p = s->params;
946 947 948 949 950 951 952 953 954 955 956 957 958
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

959
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
960
	
961 962 963 964 965 966 967 968 969 970 971 972 973 974
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
975
    buf_msg->vc_index = msg->saved_vc;
976 977 978 979
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
980

981 982
  tw_event_send(buf_e);
  return;
983 984
}

985
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
986
{
987 988 989
   term_rev_ecount++;
   term_ecount--;

990
   tw_rand_reverse_unif(lp->rng);
991

992 993 994
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
995

996
   if(!num_chunks)
997
       num_chunks = 1;
998

999 1000 1001 1002 1003 1004
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
1005
        codes_local_latency_reverse(lp);
1006 1007
        s->in_send_loop = 0;
    }
1008 1009 1010
      if(bf->c11) {
        s->issueIdle = 0;
      }
1011 1012
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
1013 1014 1015 1016
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
1017

1018
/* generates packet at the current dragonfly compute node */
1019 1020 1021
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
1022

1023
  tw_stime ts, nic_ts;
1024

1025
  assert(lp->gid != msg->dest_terminal_id);
1026
  const dragonfly_param *p = s->params;
1027

1028 1029
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
1030 1031
  if (msg->packet_size % s->params->chunk_size) 
      num_chunks++;
1032 1033 1034 1035

  if(!num_chunks)
    num_chunks = 1;

1036 1037
  nic_ts = g_tw_lookahead + s->params->cn_delay * msg->packet_size + tw_rand_unif(lp->rng);
  
1038
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
1039 1040 1041 1042
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
1043

1044 1045 1046
  if(msg->packet_ID == TRACK && msg->message_id == TRACK_MSG)
      printf("\n Packet generated at terminal %d destination %d ", lp->gid, s->router_id);

1047 1048 1049 1050 1051
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
1067

1068 1069 1070
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);