codes-darshan-io-wrkld.c 57.9 KB
Newer Older
1 2 3 4 5
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */
6
#include <assert.h>
7
#include <math.h>
8 9

#include "codes/codes-workload.h"
10
#include "codes/quickhash.h"
11
#include "codes-workload-method.h"
12

13
#include "darshan-logutils.h"
14

15 16 17
#define DEF_INTER_IO_DELAY_PCT 0.2
#define DEF_INTER_CYC_DELAY_PCT 0.4

18 19 20 21
#define DARSHAN_NEGLIGIBLE_DELAY .001

#define RANK_HASH_TABLE_SIZE 397

22 23 24 25 26
#define IO_IS_IN_SIZE_BIN_RANGE(size, bin_ndx, bin_min_sizes)                       \
        ((bin_ndx == 9) ?                                                           \
        (size >= bin_min_sizes[bin_ndx]) :                                          \
        ((size >= bin_min_sizes[bin_ndx]) && (size < bin_min_sizes[bin_ndx + 1])))

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* structure for storing a darshan workload operation (a codes op with 2 timestamps) */
struct darshan_io_op
{
    struct codes_workload_op codes_op;
    double start_time;
    double end_time;
};

/* I/O context structure managed by each rank in the darshan workload */
struct rank_io_context
{
    int64_t my_rank;
    double last_op_time;
    void *io_op_dat;
    struct qhash_head hash_link;
};

44 45 46 47 48 49 50 51
    struct darshan_io_dat_array
    {
        struct darshan_io_op *op_array;
        int64_t op_arr_ndx;
        int64_t op_arr_cnt;
    };


52
/* Darshan workload generator's implementation of the CODES workload API */
53 54
static int darshan_io_workload_load(const char *params, int rank);
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
static int darshan_rank_hash_compare(void *key, struct qhash_head *link);

/* Darshan I/O op data structure access (insert, remove) abstraction */
static void *darshan_init_io_op_dat(void);
static void darshan_insert_next_io_op(void *io_op_dat, struct darshan_io_op *io_op);
static void darshan_remove_next_io_op(void *io_op_dat, struct darshan_io_op *io_op,
                                      double last_op_time);
static void darshan_finalize_io_op_dat(void *io_op_dat);
static int darshan_io_op_compare(const void *p1, const void *p2);

/* Helper functions for implementing the (complex, nonfactored) Darshan workload generator */
static void generate_psx_ind_file_events(struct darshan_file *file,
                                         struct rank_io_context *io_context);
static void generate_psx_coll_file_events(struct darshan_file *file,
                                          struct rank_io_context *io_context,
                                          int64_t nprocs, int64_t aggregator_cnt);
71
static double generate_psx_open_event(struct darshan_file *file, int create_flag,
72
                                      double meta_op_time, double cur_time,
73
                                      struct rank_io_context *io_context, int insert_flag);
74
static double generate_psx_close_event(struct darshan_file *file, double meta_op_time,
75 76
                                       double cur_time, struct rank_io_context *io_context,
                                       int insert_flag);
77 78
static double generate_barrier_event(struct darshan_file *file, int64_t root, double cur_time,
                                     struct rank_io_context *io_context);
79
static double generate_psx_ind_io_events(struct darshan_file *file, int64_t io_ops_this_cycle,
80 81
                                         double inter_io_delay, double meta_op_time,
                                         double cur_time, struct rank_io_context *io_context);
82 83
static double generate_psx_coll_io_events(struct darshan_file *file, int64_t ind_io_ops_this_cycle,
                                          int64_t coll_io_ops_this_cycle, int64_t nprocs,
84 85
                                          int64_t aggregator_cnt, double inter_io_delay,
                                          double meta_op_time, double cur_time,
86
                                          struct rank_io_context *io_context);
87 88 89
static void determine_io_params(struct darshan_file *file, int write_flag, int coll_flag,
                                int64_t io_cycles, size_t *io_sz, off_t *io_off);
static void calc_io_delays(struct darshan_file *file, int64_t num_opens, int64_t num_io_ops,
90
                           double total_delay, double *first_io_delay, double *close_delay,
91 92 93
                           double *inter_open_delay, double *inter_io_delay);
static void file_sanity_check(struct darshan_file *file, struct darshan_job *job);

94 95 96 97 98 99
void print_events(struct darshan_io_op *event_list,
                  int64_t event_list_cnt,
                  int rank,
                  FILE *log_stream);


100 101 102 103 104 105 106 107
/* workload method name and function pointers for the CODES workload API */
struct codes_workload_method darshan_io_workload_method =
{
    .method_name = "darshan_io_workload",
    .codes_workload_load = darshan_io_workload_load,
    .codes_workload_get_next = darshan_io_workload_get_next,
};

108
/* hash table to store per-rank workload contexts */
109
static struct qhash_table *rank_tbl = NULL;
110
static int rank_tbl_pop = 0;
111

112 113 114
/* load the workload generator for this rank, given input params */
static int darshan_io_workload_load(const char *params, int rank)
{
115 116
    darshan_params *d_params = (darshan_params *)params;
    darshan_fd logfile_fd;
117 118
    struct darshan_job job;
    struct darshan_file next_file;
119
    struct rank_io_context *my_ctx;
120
    int ret;
121

122
    if (!d_params)
123 124
        return -1;

125
    /* open the darshan log to begin reading in file i/o info */
126 127
    logfile_fd = darshan_log_open(d_params->log_file_path, "r");
    if (logfile_fd < 0)
128
        return -1;
129

130 131 132 133 134 135 136 137
    /* get the per-job stats from the log */
    ret = darshan_log_getjob(logfile_fd, &job);
    if (ret < 0)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }

138 139 140 141 142 143 144 145 146 147 148
    /* allocate the i/o context needed by this rank */
    my_ctx = malloc(sizeof(struct rank_io_context));
    if (!my_ctx)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }
    my_ctx->my_rank = (int64_t)rank;
    my_ctx->last_op_time = 0.0;
    my_ctx->io_op_dat = darshan_init_io_op_dat();

149 150 151 152 153 154 155 156 157 158
    /* loop over all files contained in the log file */
    while ((ret = darshan_log_getfile(logfile_fd, &job, &next_file)) > 0)
    {
        /* generate all i/o events contained in this independent file */
        if (next_file.rank == rank)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);

            /* generate i/o events and store them in this rank's workload context */
159
            generate_psx_ind_file_events(&next_file, my_ctx);
160 161 162 163 164 165
        }
        /* generate all i/o events involving this rank in this collective file */
        else if (next_file.rank == -1)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);
166 167 168

            /* generate collective i/o events and store them in the rank context */
            generate_psx_coll_file_events(&next_file, my_ctx, job.nprocs, d_params->aggregator_cnt);
169
        }
170 171
        else
            continue;
172 173 174 175

        assert(next_file.counters[CP_POSIX_OPENS] == 0);
        assert(next_file.counters[CP_POSIX_READS] == 0);
        assert(next_file.counters[CP_POSIX_WRITES] == 0);
176 177 178 179
    }
    if (ret < 0)
        return -1;

180
    darshan_log_close(logfile_fd);
181

182 183 184 185 186 187 188 189 190 191 192 193 194
    /* finalize the rank's i/o context so i/o ops may be retrieved later (in order) */
    darshan_finalize_io_op_dat(my_ctx->io_op_dat);

    /* initialize the hash table of rank contexts, if it has not been initialized */
    if (!rank_tbl)
    {
        rank_tbl = qhash_init(darshan_rank_hash_compare, quickhash_64bit_hash, RANK_HASH_TABLE_SIZE);
        if (!rank_tbl)
            return -1;
    }

    /* add this rank context to the hash table */
    qhash_add(rank_tbl, &(my_ctx->my_rank), &(my_ctx->hash_link));
195
    rank_tbl_pop++;
196

197 198 199
    struct darshan_io_dat_array *arr = (struct darshan_io_dat_array *)my_ctx->io_op_dat;
    print_events(arr->op_array, arr->op_arr_cnt, rank, d_params->stream);

200 201 202 203 204 205
    return 0;
}

/* pull the next event (independent or collective) for this rank from its event context */
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op)
{
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    int64_t my_rank = (int64_t)rank;
    struct qhash_head *hash_link = NULL;
    struct rank_io_context *tmp = NULL;
    struct darshan_io_op next_io_op;

    /* find i/o context for this rank in the rank hash table */
    hash_link = qhash_search(rank_tbl, &my_rank);

    /* terminate the workload if there is no valid rank context */
    if (!hash_link)
    {
        op->op_type = CODES_WK_END;
        return;
    }

    /* get access to the rank's io_context data */
    tmp = qhash_entry(hash_link, struct rank_io_context, hash_link);
    assert(tmp->my_rank == my_rank);

    /* get the next darshan i/o op out of this rank's context */
    darshan_remove_next_io_op(tmp->io_op_dat, &next_io_op, tmp->last_op_time);

    /* free the rank's i/o context if this is the last i/o op */
    if (next_io_op.codes_op.op_type == CODES_WK_END)
    {
        qhash_del(hash_link);
        free(tmp);
233 234 235 236
 
        rank_tbl_pop--;
        if (!rank_tbl_pop)
            qhash_finalize(rank_tbl);
237 238 239 240 241 242 243 244 245
    }
    else
    {
        /* else, set the last op time to be the end of the returned op */
        tmp->last_op_time = next_io_op.end_time;
    }

    /* return the codes op contained in the darshan i/o op */
    *op = next_io_op.codes_op;
246 247 248 249

    return;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
/* comparison function for comparing two hash keys (used for storing multiple io contexts) */
static int darshan_rank_hash_compare(
    void *key, struct qhash_head *link)
{
    int64_t *in_rank = (int64_t *)key;
    struct rank_io_context *tmp;

    tmp = qhash_entry(link, struct rank_io_context, hash_link);
    if (tmp->my_rank == *in_rank)
        return 1;

    return 0;
}

/*****************************************/
/*                                       */
/*   Darshan I/O op storage abstraction  */
/*                                       */
/*****************************************/

#define DARSHAN_IO_OP_INC_CNT 100000

272
#if 0
273 274 275 276 277 278 279
/* dynamically allocated array data structure for storing darshan i/o events */
struct darshan_io_dat_array
{
    struct darshan_io_op *op_array;
    int64_t op_arr_ndx;
    int64_t op_arr_cnt;
};
280
#endif
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

/* initialize the dynamic array data structure */
static void *darshan_init_io_op_dat()
{
    struct darshan_io_dat_array *tmp;

    /* initialize the array data structure */
    tmp = malloc(sizeof(struct darshan_io_dat_array));
    assert(tmp);
    tmp->op_array = malloc(DARSHAN_IO_OP_INC_CNT * sizeof(struct darshan_io_op));
    assert(tmp->op_array);
    tmp->op_arr_ndx = 0;
    tmp->op_arr_cnt = DARSHAN_IO_OP_INC_CNT;

    /* return the array info for this rank's i/o context */
    return (void *)tmp;
}

/* store the i/o event in this rank's i/o context */
static void darshan_insert_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;
    struct darshan_io_op *tmp;

    /* realloc array if it is already full */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        tmp = malloc((array->op_arr_cnt + DARSHAN_IO_OP_INC_CNT) * sizeof(struct darshan_io_op));
        assert(tmp);
        memcpy(tmp, array->op_array, array->op_arr_cnt * sizeof(struct darshan_io_op));
        free(array->op_array);
        array->op_array = tmp;
        array->op_arr_cnt += DARSHAN_IO_OP_INC_CNT;
    }

    /* add the darshan i/o op to the array */
    array->op_array[array->op_arr_ndx++] = *io_op;

    return;
}

/* pull the next i/o event out of this rank's i/o context */
static void darshan_remove_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op, double last_op_time)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* if the array has been scanned completely already */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        /* no more events just end the workload */
        io_op->codes_op.op_type = CODES_WK_END;

        /* free data structures */
        free(array->op_array);
        free(array);
    }
    else
    {
        struct darshan_io_op *tmp = &(array->op_array[array->op_arr_ndx]);

        if ((tmp->start_time - last_op_time) < DARSHAN_NEGLIGIBLE_DELAY)
        {
            /* there is no delay, just return the next op in the array */
            *io_op = *tmp;
            array->op_arr_ndx++;
        }
        else
        {
            /* there is a nonnegligible delay, so generate and return a delay event */
            io_op->codes_op.op_type = CODES_WK_DELAY;
            io_op->codes_op.u.delay.seconds = tmp->start_time - last_op_time;
            io_op->start_time = last_op_time;
            io_op->end_time = tmp->start_time;
        }
    }
}

/* sort the dynamic array in order of i/o op start time */
static void darshan_finalize_io_op_dat(
    void *io_op_dat)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* sort this rank's i/o op list */
    qsort(array->op_array, array->op_arr_ndx, sizeof(struct darshan_io_op), darshan_io_op_compare);
    array->op_arr_cnt = array->op_arr_ndx;
    array->op_arr_ndx = 0;

    return;
}

/* comparison function for sorting darshan_io_ops in order of start timestamps */
static int darshan_io_op_compare(
    const void *p1, const void *p2)
{
    struct darshan_io_op *a = (struct darshan_io_op *)p1;
    struct darshan_io_op *b = (struct darshan_io_op *)p2;

    if (a->start_time < b->start_time)
        return -1;
    else if (a->start_time > b->start_time)
        return 1;
    else
        return 0;
}

/*****************************************/
/*                                       */
/* Darshan workload generation functions */
/*                                       */
/*****************************************/
394 395 396

/* generate events for an independently opened file, and store these events */
static void generate_psx_ind_file_events(
397
    struct darshan_file *file, struct rank_io_context *io_context)
398 399 400
{
    int64_t io_ops_this_cycle;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
401
    double total_delay;
402 403 404 405 406 407 408 409 410 411 412 413 414
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_open_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
    int create_flag;
    int64_t i;

    /* if the file was never really opened, just return because we have no timing info */
    if (file->counters[CP_POSIX_OPENS] == 0)
        return;

    /* determine delay available per open-io-close cycle */
415 416 417
    total_delay = file->fcounters[CP_F_CLOSE_TIMESTAMP] - file->fcounters[CP_F_OPEN_TIMESTAMP] -
                  file->fcounters[CP_F_POSIX_READ_TIME] - file->fcounters[CP_F_POSIX_WRITE_TIME] -
                  file->fcounters[CP_F_POSIX_META_TIME];
418 419 420

    /* calculate synthetic delay values */
    calc_io_delays(file, file->counters[CP_POSIX_OPENS],
421 422
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES], total_delay,
                   &first_io_delay, &close_delay, &inter_open_delay, &inter_io_delay);
423 424 425 426 427 428

    /* calculate average meta op time (for i/o and opens/closes) */
    /* TODO: this needs to be updated when we add in stat, seek, etc. */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

429 430 431 432 433
    /* set the create flag if the file was written to */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
434 435 436 437 438 439

    /* generate open/io/close events for all cycles */
    /* TODO: add stats */
    for (i = 0; file->counters[CP_POSIX_OPENS]; i++, file->counters[CP_POSIX_OPENS]--)
    {
        /* generate an open event */
440 441
        cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time,
                                           io_context, 1);
442 443 444 445 446 447 448 449 450 451
        create_flag = 0;

        /* account for potential delay from first open to first io */
        cur_time += first_io_delay;

        io_ops_this_cycle = ceil((double)(file->counters[CP_POSIX_READS] +
                                 file->counters[CP_POSIX_WRITES]) /
                                 file->counters[CP_POSIX_OPENS]);

        /* perform the calculated number of i/o operations for this file open */
452
        cur_time = generate_psx_ind_io_events(file, io_ops_this_cycle, inter_io_delay,
453
                                              meta_op_time, cur_time, io_context);
454 455 456 457 458

        /* account for potential delay from last io to close */
        cur_time += close_delay;

        /* generate a close for the open event at the start of the loop */
459
        cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context, 1);
460 461 462 463 464 465 466

        /* account for potential interopen delay if more than one open */
        if (file->counters[CP_POSIX_OPENS] > 1)
        {
            cur_time += inter_open_delay;
        }
    }
467 468 469 470 471 472 473 474 475

    return;
}

/* generate events for the i/o ops stored in a collectively opened file for this rank */
void generate_psx_coll_file_events(
    struct darshan_file *file, struct rank_io_context *io_context,
    int64_t nprocs, int64_t in_agg_cnt)
{
476 477 478 479 480
    int64_t open_cycles;
    int64_t total_ind_opens;
    int64_t total_coll_opens;
    int64_t ind_opens_this_cycle;
    int64_t coll_opens_this_cycle;
481 482
    int64_t extra_opens = 0;
    int64_t extra_io_ops = 0;
483
    int64_t total_io_ops = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
484 485 486 487
    int64_t total_ind_io_ops;
    int64_t total_coll_io_ops;
    int64_t ind_io_ops_this_cycle;
    int64_t coll_io_ops_this_cycle;
488
    int64_t rank_cnt;
489 490
    int create_flag = 0;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
491
    double total_delay;
492 493 494 495 496
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_cycle_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
497
    int64_t i;
498 499 500 501 502 503 504 505 506 507

    /* the collective file was never opened (i.e., just stat-ed), so return */
    if (!(file->counters[CP_POSIX_OPENS]))
        return;

    /*  in this case, posix opens are less than mpi opens...
     *  this is probably a mpi deferred open -- assume app will not use this, currently.
     */
    assert(file->counters[CP_POSIX_OPENS] >= nprocs);

508 509
    if (file->counters[CP_COLL_OPENS] || file->counters[CP_INDEP_OPENS])
    {
510 511
        extra_opens = file->counters[CP_POSIX_OPENS] - file->counters[CP_COLL_OPENS] -
                      file->counters[CP_INDEP_OPENS];
512

513 514
        total_coll_opens = file->counters[CP_COLL_OPENS];
        total_ind_opens = file->counters[CP_POSIX_OPENS] - total_coll_opens - extra_opens;
515 516 517 518

        total_ind_io_ops = file->counters[CP_INDEP_READS] + file->counters[CP_INDEP_WRITES];
        total_coll_io_ops = (file->counters[CP_COLL_READS] + file->counters[CP_COLL_WRITES]) / nprocs;

519 520 521 522 523 524 525 526
        if (file->counters[CP_COLL_OPENS])
        {
            total_delay = (file->fcounters[CP_F_CLOSE_TIMESTAMP] -
                           file->fcounters[CP_F_OPEN_TIMESTAMP] -
                           (file->fcounters[CP_F_POSIX_READ_TIME] / in_agg_cnt) -
                           (file->fcounters[CP_F_POSIX_WRITE_TIME] / in_agg_cnt) -
                           (file->fcounters[CP_F_POSIX_META_TIME] / in_agg_cnt));

527
            open_cycles = total_coll_opens / nprocs;
528 529 530 531
            calc_io_delays(file, ceil(((double)(total_coll_opens + total_ind_opens)) / nprocs),
                           total_coll_io_ops + ceil((double)total_ind_io_ops / nprocs), total_delay,
                           &first_io_delay, &close_delay, &inter_cycle_delay, &inter_io_delay);
        }
532
        else
533 534 535 536 537 538
        {
            total_delay = (file->fcounters[CP_F_CLOSE_TIMESTAMP] -
                           file->fcounters[CP_F_OPEN_TIMESTAMP] -
                           (file->fcounters[CP_F_POSIX_READ_TIME] / nprocs) -
                           (file->fcounters[CP_F_POSIX_WRITE_TIME] / nprocs) -
                           (file->fcounters[CP_F_POSIX_META_TIME] / nprocs));
539

540 541 542 543
            open_cycles = ceil((double)total_ind_opens / nprocs);
            calc_io_delays(file, open_cycles, ceil((double)total_ind_io_ops / nprocs), total_delay,
                           &first_io_delay, &close_delay, &inter_cycle_delay, &inter_io_delay);
        }
544 545 546 547 548 549 550 551 552 553 554
    }
    else
    {
        extra_opens = file->counters[CP_POSIX_OPENS] % nprocs;
        if (extra_opens && ((file->counters[CP_POSIX_OPENS] / nprocs) % extra_opens))
        {
            extra_opens = 0;
        }
        else
        {
            extra_io_ops = total_io_ops % nprocs;
555 556 557 558 559
            if (extra_io_ops != extra_opens)
            {
                extra_opens = 0;
                extra_io_ops = 0;
            }
560 561 562
        }

        total_coll_opens = 0;
563
        total_ind_opens = file->counters[CP_POSIX_OPENS] - extra_opens;
564 565 566

        total_ind_io_ops = total_io_ops - extra_io_ops;
        total_coll_io_ops = 0;
567

568 569 570 571 572 573
        total_delay = (file->fcounters[CP_F_CLOSE_TIMESTAMP] -
                       file->fcounters[CP_F_OPEN_TIMESTAMP] -
                       (file->fcounters[CP_F_POSIX_READ_TIME] / nprocs) -
                       (file->fcounters[CP_F_POSIX_WRITE_TIME] / nprocs) -
                       (file->fcounters[CP_F_POSIX_META_TIME] / nprocs));

574 575 576
        open_cycles = ceil((double)total_ind_opens / nprocs);
        calc_io_delays(file, open_cycles, ceil((double)total_ind_io_ops / nprocs), total_delay,
                       &first_io_delay, &close_delay, &inter_cycle_delay, &inter_io_delay);
577 578 579
    }
    assert(extra_opens <= open_cycles);

580 581 582 583
    /* calculate average meta op time (for i/o and opens/closes) */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

584 585 586 587 588
    /* it is rare to overwrite existing files, so set the create flag */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
589

590 591
    /* generate all events for this collectively opened file */
    for (i = 0; i < open_cycles; i++)
592
    {
593 594
        ind_opens_this_cycle = ceil((double)total_ind_opens / (open_cycles - i));
        coll_opens_this_cycle = total_coll_opens / (open_cycles - i);
595

596 597 598
        /* assign any extra opens to rank 0 (these may correspond to file creations or
         * header reads/writes)
         */
599
        if (extra_opens && !(i % (open_cycles / extra_opens)))
600
        {
601 602
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time,
                                               io_context, (io_context->my_rank == 0));
603 604
            create_flag = 0;

605 606 607 608 609 610
            if (!file->counters[CP_COLL_OPENS] && !file->counters[CP_INDEP_OPENS])
            {
                cur_time = generate_psx_coll_io_events(file, 1, 0, nprocs, nprocs, 0.0,
                                                       meta_op_time, cur_time, io_context);
                extra_io_ops--;
            }
611

612 613
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context,
                                                (io_context->my_rank == 0));
614 615 616
            file->counters[CP_POSIX_OPENS]--;
        }

617
        while (ind_opens_this_cycle)
618
        {
619 620 621 622 623
            if (ind_opens_this_cycle >= nprocs)
                rank_cnt = nprocs;
            else
                rank_cnt = ind_opens_this_cycle;

624 625
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time,
                                               io_context, (io_context->my_rank < rank_cnt));
626 627
            create_flag = 0;

628 629 630 631
            cur_time += first_io_delay;

            ind_io_ops_this_cycle = ceil(((double)total_ind_io_ops / total_ind_opens) * rank_cnt);
            cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle, 0, nprocs,
632
                                                   nprocs, inter_io_delay, meta_op_time,
633 634 635 636
                                                   cur_time, io_context);
            total_ind_io_ops -= ind_io_ops_this_cycle;

            cur_time += close_delay;
637

638 639
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context,
                                                (io_context->my_rank < rank_cnt));
640

641 642 643 644 645 646
            file->counters[CP_POSIX_OPENS] -= rank_cnt;
            ind_opens_this_cycle -= rank_cnt;
            total_ind_opens -= rank_cnt;

            if (file->counters[CP_POSIX_OPENS])
                cur_time += inter_cycle_delay;
647 648
        }

649
        while (coll_opens_this_cycle)
650
        {
651
            assert(!create_flag);
652

653
            cur_time = generate_barrier_event(file, 0, cur_time, io_context);
654 655

            cur_time = generate_psx_open_event(file, create_flag, meta_op_time,
656
                                               cur_time, io_context, 1);
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            cur_time += first_io_delay;

            if (file->counters[CP_INDEP_OPENS])
                ind_io_ops_this_cycle = 0;
            else
                ind_io_ops_this_cycle = ceil((double)total_ind_io_ops / 
                                             (file->counters[CP_COLL_OPENS] / nprocs));

            coll_io_ops_this_cycle = ceil((double)total_coll_io_ops / 
                                          (file->counters[CP_COLL_OPENS] / nprocs));
            cur_time = generate_psx_coll_io_events(file, ind_io_ops_this_cycle,
                                                   coll_io_ops_this_cycle, nprocs, in_agg_cnt,
                                                   inter_io_delay, meta_op_time,
                                                   cur_time, io_context);
            total_ind_io_ops -= ind_io_ops_this_cycle;
            total_coll_io_ops -= coll_io_ops_this_cycle;

            cur_time += close_delay;
676

677
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context, 1);
678 679

            file->counters[CP_POSIX_OPENS] -= nprocs;
680 681
            file->counters[CP_COLL_OPENS] -= nprocs;
            coll_opens_this_cycle -= nprocs;
682 683 684 685
            total_coll_opens -= nprocs;

            if (file->counters[CP_POSIX_OPENS])
                cur_time += inter_cycle_delay;
686 687
        }
    }
688 689 690 691 692 693

    return;
}

/* fill in an open event structure and store it with the rank context */
static double generate_psx_open_event(
694
    struct darshan_file *file, int create_flag, double meta_op_time,
695
    double cur_time, struct rank_io_context *io_context, int insert_flag)
696
{
697 698 699 700 701 702 703
    struct darshan_io_op next_io_op = 
    {
        .codes_op.op_type = CODES_WK_OPEN,
        .codes_op.u.open.file_id = file->hash,
        .codes_op.u.open.create_flag = create_flag,
        .start_time = cur_time
    };
704 705 706

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
707
    next_io_op.end_time = cur_time;
708

709
    /* store the open event (if this rank performed it) */
710
    if (insert_flag)
711
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
712 713 714 715 716 717

    return cur_time;
}

/* fill in a close event structure and store it with the rank context */
static double generate_psx_close_event(
718
    struct darshan_file *file, double meta_op_time, double cur_time,
719
    struct rank_io_context *io_context, int insert_flag)
720
{
721 722 723 724 725 726
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_CLOSE,
        .codes_op.u.close.file_id = file->hash,
        .start_time = cur_time
    };
727 728 729

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
730
    next_io_op.end_time = cur_time;
731

732
    /* store the close event (if this rank performed it) */
733
    if (insert_flag)
734
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
735 736 737 738 739 740

    return cur_time;
}

/* fill in a barrier event structure and store it with the rank context */
static double generate_barrier_event(
741
    struct darshan_file *file, int64_t root, double cur_time, struct rank_io_context *io_context)
742
{
743 744 745 746 747 748 749
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_BARRIER, 
        .codes_op.u.barrier.count = -1, /* all processes */
        .codes_op.u.barrier.root = root,
        .start_time = cur_time
    };
750 751

    cur_time += .000001; /* small synthetic delay representing time to barrier */
752
    next_io_op.end_time = cur_time;
753

754
    /* store the barrier event */
755
    if (file->rank == -1)
756
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
757 758 759 760 761 762

    return cur_time;
}

/* generate all i/o events for one independent file open and store them with the rank context */
static double generate_psx_ind_io_events(
763 764
    struct darshan_file *file, int64_t io_ops_this_cycle, double inter_io_delay,
    double meta_op_time, double cur_time, struct rank_io_context *io_context)
765 766 767 768 769 770 771 772 773
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    double io_op_time;
    size_t io_sz;
    off_t io_off;
    int64_t i;
774
    struct darshan_io_op next_io_op;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

    /* if there are no i/o ops, just return immediately */
    if (!io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

        /* determine how many io ops to do before next rw switch */
        if (!rw)
            io_ops_this_rw = file->counters[CP_POSIX_READS] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        else
            io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);

        /* initialize the rd and wr bandwidth values using total io size and time */
        if (file->fcounters[CP_F_POSIX_READ_TIME])
            rd_bw = file->counters[CP_BYTES_READ] / file->fcounters[CP_F_POSIX_READ_TIME];
        if (file->fcounters[CP_F_POSIX_WRITE_TIME])
            wr_bw = file->counters[CP_BYTES_WRITTEN] / file->fcounters[CP_F_POSIX_WRITE_TIME];
    }

    /* loop to generate all reads/writes for this open/close sequence */
    for (i = 0; i < io_ops_this_cycle; i++)
    {
        /* calculate what value to use for i/o size and offset */
        determine_io_params(file, rw, 0, file->counters[CP_POSIX_OPENS], &io_sz, &io_off);
        if (!rw)
        {
            /* generate a read event */
815 816 817 818 819
            next_io_op.codes_op.op_type = CODES_WK_READ;
            next_io_op.codes_op.u.read.file_id = file->hash;
            next_io_op.codes_op.u.read.size = io_sz;
            next_io_op.codes_op.u.read.offset = io_off;
            next_io_op.start_time = cur_time;
820 821 822 823 824

            /* set the end time based on observed bandwidth and io size */
            if (rd_bw == 0.0)
                io_op_time = 0.0;
            else
825
                io_op_time = (io_sz / rd_bw);
826 827 828

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
829
            next_io_op.end_time = cur_time;
830 831 832 833 834
            file->counters[CP_POSIX_READS]--;
        }
        else
        {
            /* generate a write event */
835 836 837 838 839
            next_io_op.codes_op.op_type = CODES_WK_WRITE;
            next_io_op.codes_op.u.write.file_id = file->hash;
            next_io_op.codes_op.u.write.size = io_sz;
            next_io_op.codes_op.u.write.offset = io_off;
            next_io_op.start_time = cur_time;
840 841 842 843 844

            /* set the end time based on observed bandwidth and io size */
            if (wr_bw == 0.0)
                io_op_time = 0.0;
            else
845
                io_op_time = (io_sz / wr_bw);
846 847 848

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
849
            next_io_op.end_time = cur_time;
850 851 852 853 854 855 856
            file->counters[CP_POSIX_WRITES]--;
        }
        psx_rw_ops_remaining--;
        io_ops_this_rw--;
        assert(file->counters[CP_POSIX_READS] >= 0);
        assert(file->counters[CP_POSIX_WRITES] >= 0);

857 858
        /* store the i/o event */
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

        /* determine whether to toggle between reads and writes */
        if (!io_ops_this_rw && psx_rw_ops_remaining)
        {
            /* toggle the read/write flag */
            rw ^= 1;
            file->counters[CP_RW_SWITCHES]--;

            /* determine how many io ops to do before next rw switch */
            if (!rw)
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        }

        if (i != (io_ops_this_cycle - 1))
        {
            /* update current time to account for possible delay between i/o operations */
879
            cur_time += inter_io_delay;
880 881 882 883 884 885 886 887 888 889 890 891
        }
    }

    /* reset the static rw flag if this is the last open-close cycle for this file */
    if (file->counters[CP_POSIX_OPENS] == 1)
    {
        rw = -1;
    }

    return cur_time;
}

892 893
static double generate_psx_coll_io_events(
    struct darshan_file *file, int64_t ind_io_ops_this_cycle, int64_t coll_io_ops_this_cycle,
894 895
    int64_t nprocs, int64_t aggregator_cnt, double inter_io_delay, double meta_op_time,
    double cur_time, struct rank_io_context *io_context)
896 897 898 899 900 901 902 903 904 905 906 907
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    int64_t total_io_ops_this_cycle = ind_io_ops_this_cycle + coll_io_ops_this_cycle;
    int64_t total_coll_io_ops =
            (file->counters[CP_COLL_READS] + file->counters[CP_COLL_WRITES]) / nprocs;
    int64_t tmp_rank;
    int64_t next_ind_io_rank = 0;
    int64_t io_cnt;
    int64_t ranks_per_aggregator = nprocs / aggregator_cnt;
908
    int64_t ind_ops_remaining = 0;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    double io_op_time;
    double max_cur_time = 0.0;
    int ind_coll;
    size_t io_sz;
    off_t io_off;
    int64_t i, j;
    struct darshan_io_op next_io_op;

    if (!total_io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        /* determine how many io ops to do before next rw switch */
        if (!rw)
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_READS] / nprocs) + file->counters[CP_INDEP_READS]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
        }
        else
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_WRITES] / nprocs) + file->counters[CP_INDEP_WRITES]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                 ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
        }

954 955 956 957 958 959 960
        /* initialize the rd and wr bandwidth values using total io size and time */
        if (file->fcounters[CP_F_POSIX_READ_TIME])
            rd_bw = file->counters[CP_BYTES_READ] / file->fcounters[CP_F_POSIX_READ_TIME];
        if (file->fcounters[CP_F_POSIX_WRITE_TIME])
            wr_bw = file->counters[CP_BYTES_WRITTEN] / file->fcounters[CP_F_POSIX_WRITE_TIME];
    }

961 962 963 964 965
    if (coll_io_ops_this_cycle)
        ind_ops_remaining = ceil((double)ind_io_ops_this_cycle / coll_io_ops_this_cycle);
    else
        ind_ops_remaining = ind_io_ops_this_cycle;

966 967
    for (i = 0; i < total_io_ops_this_cycle; i++)
    {
968
        if (ind_ops_remaining)
969 970 971 972
        {
            ind_coll = 0;
            tmp_rank = (next_ind_io_rank++) % nprocs;
            io_cnt = 1;
973 974
            ind_io_ops_this_cycle--;
            ind_ops_remaining--;
975 976 977 978 979 980 981 982 983
            if (!rw)
                file->counters[CP_INDEP_READS]--;
            else
                file->counters[CP_INDEP_WRITES]--;
        }
        else
        {
            ind_coll = 1;
            tmp_rank = 0;
984
            coll_io_ops_this_cycle--;
985 986 987
            if (!rw)
            {
                io_cnt = ceil((double)(file->counters[CP_POSIX_READS] -
988
                              file->counters[CP_INDEP_READS]) / 
989 990 991 992 993 994
                              (file->counters[CP_COLL_READS] / nprocs));
                file->counters[CP_COLL_READS] -= nprocs;
            }
            else
            {
                io_cnt = ceil((double)(file->counters[CP_POSIX_WRITES] -
995
                              file->counters[CP_INDEP_WRITES]) / 
996 997 998
                              (file->counters[CP_COLL_WRITES] / nprocs));
                file->counters[CP_COLL_WRITES] -= nprocs;
            }
999 1000 1001 1002 1003 1004 1005

            if (coll_io_ops_this_cycle)
                ind_ops_remaining = ceil((double)ind_io_ops_this_cycle / coll_io_ops_this_cycle);
            else
                ind_ops_remaining = ind_io_ops_this_cycle;

            cur_time = generate_barrier_event(file, 0, cur_time, io_context);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        }

        for (j = 0; j < io_cnt; j++)
        {
            determine_io_params(file, rw, ind_coll, (ind_coll) ? total_coll_io_ops :
                                file->counters[CP_POSIX_OPENS] / nprocs, &io_sz, &io_off);
            if (!rw)
            {
                /* generate a read event */
                next_io_op.codes_op.op_type = CODES_WK_READ;
                next_io_op.codes_op.u.read.file_id = file->hash;
                next_io_op.codes_op.u.read.size = io_sz;
                next_io_op.codes_op.u.read.offset = io_off;
                next_io_op.start_time = cur_time;

                /* set the end time based on observed bandwidth and io size */
                if (rd_bw == 0.0)
                    io_op_time = 0.0;
                else
                    io_op_time = (io_sz / rd_bw);
                
                next_io_op.end_time = cur_time + io_op_time + meta_op_time;
                file->counters[CP_POSIX_READS]--;
            }
            else
            {
                /* generate a write event */
                next_io_op.codes_op.op_type = CODES_WK_WRITE;
                next_io_op.codes_op.u.write.file_id = file->hash;
                next_io_op.codes_op.u.write.size = io_sz;
                next_io_op.codes_op.u.write.offset = io_off;
                next_io_op.start_time = cur_time;

                /* set the end time based on observed bandwidth and io size */
                if (wr_bw == 0.0)
                    io_op_time = 0.0;
                else
                    io_op_time = (io_sz / wr_bw);

                next_io_op.end_time = cur_time + io_op_time + meta_op_time;
                file->counters[CP_POSIX_WRITES]--;
            }
            psx_rw_ops_remaining--;
            assert(file->counters[CP_POSIX_READS] >= 0);
            assert(file->counters[CP_POSIX_WRITES] >= 0);

            /*  store the i/o event */
            if (tmp_rank == io_context->my_rank)
                darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);

            if (next_io_op.end_time > max_cur_time)
                max_cur_time = next_io_op.end_time;

            tmp_rank += ranks_per_aggregator;
1060
            if (ind_coll && (tmp_rank >= (ranks_per_aggregator * aggregator_cnt)))
1061 1062 1063 1064 1065 1066 1067
            {
                tmp_rank = 0;
                cur_time = max_cur_time;
            }
        }
        io_ops_this_rw--;

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        if (ind_coll)
        {
            total_coll_io_ops--;

            cur_time = max_cur_time;
            if (i != (total_io_ops_this_cycle - 1))
                cur_time += inter_io_delay;
        }
        else
        {
1078 1079
            if (tmp_rank == (nprocs - 1) || (i == (total_io_ops_this_cycle - 1)))
            {
1080 1081
                cur_time = max_cur_time;

1082 1083 1084
                if (i != (total_io_ops_this_cycle - 1))
                    cur_time += inter_io_delay;
            }
1085 1086
        }

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        /* determine whether to toggle between reads and writes */
        if (!io_ops_this_rw && psx_rw_ops_remaining)
        {
            /* toggle the read/write flag */
            rw ^= 1;
            file->counters[CP_RW_SWITCHES] -= aggregator_cnt;

            /* determine how many io ops to do before next rw switch */
            if (!rw)
            {
                if (file->counters[CP_COLL_OPENS])
                    io_ops_this_rw =
                        ((file->counters[CP_COLL_READS] / nprocs) +
                        file->counters[CP_INDEP_READS]) / ((file->counters[CP_RW_SWITCHES] /
                        (2 * aggregator_cnt)) + 1);
                else
                    io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                     ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            }
            else
            {
                if (file->counters[CP_COLL_OPENS])
                    io_ops_this_rw =
                        ((file->counters[CP_COLL_WRITES] / nprocs) +
                        file->counters[CP_INDEP_WRITES]) / ((file->counters[CP_RW_SWITCHES] /
                        (2 * aggregator_cnt)) + 1);
                else
                    io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                     ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            }
        }
    }

    /* reset the static rw flag if this is the last open-close cycle for this file */
    if (file->counters[CP_POSIX_OPENS] <= nprocs)
    {
        rw = -1;
    }

1126
    return cur_time;
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void determine_io_params(
    struct darshan_file *file, int write_flag, int coll_flag, int64_t io_cycles, 
    size_t *io_sz, off_t *io_off)
{
    static int seq_rd_flag = -1;
    static int seq_wr_flag = -1;
    static uint64_t next_rd_off = 0;
    static uint64_t next_wr_off = 0;
    static int64_t rd_common_accesses[4] = { 0, 0, 0, 0 };
    static int64_t wr_common_accesses[4] = { 0, 0, 0, 0 };
    static int all_common_flag = -1;
    int64_t *size_bins; /* 10 size bins for io operations */
    int64_t *common_accesses = &(file->counters[CP_ACCESS1_ACCESS]); /* 4 common accesses */
    int64_t *common_access_counts = &(file->counters[CP_ACCESS1_COUNT]); /* common access counts */
    int64_t *total_io_size;
    int64_t last_io_byte;
    int64_t tmp_byte_counter = 0;
    int size_bin_ndx;
    int i, j = 0;
    int64_t bin_min_size[10] = { 0, 100, 1024, 10 * 1024, 100 * 1024, 1024 * 1024, 4 * 1024 * 1024,
                                 10 * 1024 * 1024, 100 * 1024 * 1024, 1024 * 1024 * 1024 };
    int64_t bin_def_size[10] = { 40, 512, 4 * 1024, 60 * 1024, 512 * 1024, 2 * 1024 * 1024,
                                 6 * 1024 * 1024, 40 * 1024 * 1024, 400 * 1024 * 1024,
                                 1 * 1024 * 1024 * 1024 };

    /* determine how to assign common access counters to reads and/or writes */
    if (all_common_flag == -1)
    {
        for (i = 0; i < 4; i++)
        {
            tmp_byte_counter += (common_accesses[i] * common_access_counts[i]);
        }

        if (tmp_byte_counter == (file->counters[CP_BYTES_WRITTEN] + file->counters[CP_BYTES_READ]))
        {
            all_common_flag = 1;
        }
        else
        {
            all_common_flag = 0;
        }
    }

    /* assign data values depending on whether the operation is a read or write */
    if (write_flag)
    {
        size_bins = &(file->counters[CP_SIZE_WRITE_0_100]);
        total_io_size = &(file->counters[CP_BYTES_WRITTEN]);
        last_io_byte = file->counters[CP_MAX_BYTE_WRITTEN];

        if (seq_wr_flag == -1)
        {
            if ((file->counters[CP_POSIX_WRITES] -
                ((*total_io_size - last_io_byte - 1) / (last_io_byte + 1)) - 1) ==
                file->counters[CP_SEQ_WRITES])
            {
                seq_wr_flag = 1;
            }
            else
            {
                seq_wr_flag = 0;
            }
        }
    }
    else
    {
        size_bins = &(file->counters[CP_SIZE_READ_0_100]);
        total_io_size = &(file->counters[CP_BYTES_READ]);
        last_io_byte = file->counters[CP_MAX_BYTE_READ];

        if (seq_rd_flag == -1)
        {
            if ((file->counters[CP_POSIX_READS] -
                ((*total_io_size - last_io_byte - 1) / (last_io_byte + 1)) - 1) ==
                file->counters[CP_SEQ_READS])
            {
                seq_rd_flag = 1;
            }
            else
            {
                seq_rd_flag = 0;
            }
        }
    }

    *io_sz = 0;
    if ((*total_io_size ==  0) || (write_flag && (file->counters[CP_POSIX_WRITES] == 1)) ||
        (!write_flag && (file->counters[CP_POSIX_READS] == 1)))
    {
        if (*total_io_size >= 0)
            *io_sz = *total_io_size;
    }
    else if (all_common_flag)
    {
        for (i = 0; i < 4; i++)
        {
            if (!write_flag && rd_common_accesses[i])
            {
                *io_sz = common_accesses[i];
                rd_common_accesses[i]--;
                common_access_counts[i]--;
                break;
            }
            else if (write_flag && wr_common_accesses[i])
            {
                *io_sz = common_accesses[i];
                wr_common_accesses[i]--;
                common_access_counts[i]--;
                break;
            }
        }

        if (*io_sz == 0)
        {
            for (i = 0; i < 4; i++)
            {
                if (write_flag)
                {
                    wr_common_accesses[i] = (common_access_counts[i] / io_cycles);
                    if ((*io_sz == 0) && wr_common_accesses[i])
                    {
                        *io_sz = common_accesses[i];
                        wr_common_accesses[i]--;
                        common_access_counts[i]--;
                    }
                }
                else
                {
                    rd_common_accesses[i] = (common_access_counts[i] / io_cycles);
                    if ((*io_sz == 0) && rd_common_accesses[i])
                    {
                        *io_sz = common_accesses[i];
                        rd_common_accesses[i]--;
                        common_access_counts[i]--;
                    }
                }
            }
        }
        assert(*io_sz);
    }
    else
    {
        /* try to assign a common access first */
        for (i = 0; i < 10; i++)
        {
            for (j = 0; j < 4; j++)
            {
                if (size_bins[i] && common_access_counts[j] &&
                    IO_IS_IN_SIZE_BIN_RANGE(common_accesses[j], i, bin_min_size))
                {
                    *io_sz = common_accesses[j];
                    common_access_counts[j]--;
                    break;
                }
            }
            if (*io_sz)
                break;
        }

        /* if no common accesses left, then assign a random io size */
        if (*io_sz == 0)
        {
            size_bin_ndx = rand() % 10;
            for (i = 0; i <  10; i++)
            {
                if (size_bins[size_bin_ndx])
                {
                    *io_sz = bin_def_size[size_bin_ndx];
                    break;
                }
                size_bin_ndx = (size_bin_ndx + 1) % 10;
            }
        }
        assert(*io_sz);
    }

    *total_io_size -= *io_sz;
    for (i = 0; i < 10; i++)
    {
        if (IO_IS_IN_SIZE_BIN_RANGE(*io_sz, i, bin_min_size))
            size_bins[i]--;
    }

    /* next, determine the offset to use */

    /*  for now we just assign a random offset that makes sure not to write past the recorded
     *  last byte written in the file.
     */
    if (*io_sz == 0)
    {
        *io_off = last_io_byte + 1;
    }
    else if (write_flag && seq_wr_flag)
    {
        if ((next_wr_off + *io_sz) > (last_io_byte + 1))
            next_wr_off = 0;

        *io_off = next_wr_off;
        next_wr_off += *io_sz;
    }
    else if (!write_flag && seq_rd_flag)
    {
        if ((next_rd_off + *io_sz) > (last_io_byte + 1))
            next_rd_off = 0;

        *io_off = next_rd_off;
        next_rd_off += *io_sz;
    }
    else if (*io_sz < last_io_byte)
    {
        *io_off = (off_t)rand() % (last_io_byte - *io_sz);
    }
    else
    {
        *io_off = 0;
    }

    /* reset static variable if this is the last i/o op for this file */
    if ((file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]) == 1)
    {
        next_rd_off = next_wr_off = 0;
        seq_wr_flag = seq_rd_flag = -1;
        all_common_flag = -1;
        for (i = 0; i < 4; i++)
            rd_common_accesses[i] = wr_common_accesses[i] = 0;
    }

    return;
}

/* calculate the simulated "delay" between different i/o events using delay info
 * from the file counters */
static void calc_io_delays(
1362
    struct darshan_file *file, int64_t num_opens, int64_t num_io_ops, double total_delay,
1363 1364 1365 1366 1367 1368 1369
    double *first_io_delay, double *close_delay, double *inter_open_delay, double *inter_io_delay)
{
    double first_io_time, last_io_time;
    double first_io_pct, close_pct, inter_open_pct, inter_io_pct;
    double total_delay_pct;
    double tmp_inter_io_pct, tmp_inter_open_pct;

1370
    if (total_delay > 0.0)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
    {
        /* determine the time of the first io operation */
        if (!file->fcounters[CP_F_WRITE_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_READ_START_TIMESTAMP];
        else if (!file->fcounters[CP_F_READ_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_WRITE_START_TIMESTAMP];
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                 file->fcounters[CP_F_WRITE_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_READ_START_TIMESTAMP];
        else
            first_io_time = file->fcounters[CP_F_WRITE_START_TIMESTAMP];

        /* determine the time of the last io operation */
        if (file->fcounters[CP_F_READ_END_TIMESTAMP] > file->fcounters[CP_F_WRITE_END_TIMESTAMP])
            last_io_time = file->fcounters[CP_F_READ_END_TIMESTAMP];
        else
            last_io_time = file->fcounters[CP_F_WRITE_END_TIMESTAMP];

        /* no delay contribution for inter-open delay if there is only a single open */
        if (num_opens > 1)
            inter_open_pct = DEF_INTER_CYC_DELAY_PCT;

        /* no delay contribution for inter-io delay if there is one or less io op */
1394
        if ((num_io_ops - num_opens) > 0)
1395 1396 1397 1398 1399
            inter_io_pct = DEF_INTER_IO_DELAY_PCT;

        /* determine delay contribution for first io and close delays */
        if (first_io_time != 0.0)
        {
1400 1401 1402 1403
            first_io_pct = (first_io_time - file->fcounters[CP_F_OPEN_TIMESTAMP]) *
                           (num_opens / total_delay);
            close_pct = (file->fcounters[CP_F_CLOSE_TIMESTAMP] - last_io_time) *
                        (num_opens / total_delay);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        }
        else
        {
            first_io_pct = 0.0;
            close_pct = 1 - inter_open_pct;
        }

        /* adjust per open delay percentages using a simple heuristic */
        total_delay_pct = inter_open_pct + inter_io_pct + first_io_pct + close_pct;
        if ((total_delay_pct < 1) && (inter_open_pct || inter_io_pct))
        {
            /* only adjust inter-open and inter-io delays if we underestimate */
            tmp_inter_open_pct = (inter_open_pct / (inter_open_pct + inter_io_pct)) *
                                 (1 - first_io_pct - close_pct);
            tmp_inter_io_pct = (inter_io_pct / (inter_open_pct + inter_io_pct)) *
                               (1 - first_io_pct - close_pct);
            inter_open_pct = tmp_inter_open_pct;
            inter_io_pct = tmp_inter_io_pct;
        }
        else
        {
            inter_open_pct += (inter_open_pct / total_delay_pct) * (1 - total_delay_pct);
            inter_io_pct += (inter_io_pct / total_delay_pct) * (1 - total_delay_pct);
            first_io_pct += (first_io_pct / total_delay_pct) * (1 - total_delay_pct);
            close_pct += (close_pct / total_delay_pct) * (1 - total_delay_pct);
        }

1431 1432
        *first_io_delay = (first_io_pct * total_delay) / num_opens;
        *close_delay = (close_pct * total_delay) / num_opens;
1433 1434

        if (num_opens > 1)
1435
            *inter_open_delay = (inter_open_pct * total_delay) / (num_opens - 1);
1436
        if ((num_io_ops - num_opens) > 0)
1437
            *inter_io_delay = (inter_io_pct * total_delay) / (num_io_ops - num_opens);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    }

    return;
}

/* check to make sure file stats are valid and properly formatted */
static void file_sanity_check(
    struct darshan_file *file, struct darshan_job *job)
{
    assert(file->counters[CP_POSIX_OPENS] != -1);
    assert(file->fcounters[CP_F_OPEN_TIMESTAMP] != -1);
    assert(file->counters[CP_COLL_OPENS] != -1);
    assert(file->fcounters[CP_F_CLOSE_TIMESTAMP] != -1);
    assert(file->counters[CP_POSIX_READS] != -1);
    assert(file->counters[CP_POSIX_WRITES] != -1);
    assert(file->fcounters[CP_F_POSIX_READ_TIME] != -1);
    assert(file->fcounters[CP_F_POSIX_WRITE_TIME] != -1);
    assert(file->fcounters[CP_F_POSIX_META_TIME] != -1);
    assert(file->fcounters[CP_F_READ_START_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_WRITE_START_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_READ_END_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_WRITE_END_TIMESTAMP] != -1);
    assert(file->counters[CP_BYTES_READ] != -1);
    assert(file->counters[CP_BYTES_WRITTEN] != -1);
    assert(file->counters[CP_RW_SWITCHES] != -1);

    /* adjust timestamps if they are given in absolute unix time */
    if (file->fcounters[CP_F_OPEN_TIMESTAMP] > job->start_time)
    {
        file->fcounters[CP_F_OPEN_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_OPEN_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_OPEN_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_READ_START_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_READ_START_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_READ_START_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_WRITE_START_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_WRITE_START_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_CLOSE_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_CLOSE_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_CLOSE_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_READ_END_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_READ_END_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_READ_END_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_WRITE_END_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_WRITE_END_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_WRITE_END_TIMESTAMP] = 0.0;
    }

    /* set file close time to the end of execution if it is not given */
    if (file->fcounters[CP_F_CLOSE_TIMESTAMP] == 0.0)
        file->fcounters[CP_F_CLOSE_TIMESTAMP] = job->end_time - job->start_time + 1;

    /* collapse fopen/fread/etc. calls into the corresponding open/read/etc. counters */
    file->counters[CP_POSIX_OPENS] += file->counters[CP_POSIX_FOPENS];
    file->counters[CP_POSIX_READS] += file->counters[CP_POSIX_FREADS];
    file->counters[CP_POSIX_WRITES] += file->counters[CP_POSIX_FWRITES];

    return;
}
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
void print_events(struct darshan_io_op *event_list,
                  int64_t event_list_cnt,
                  int rank,
                  FILE *log_stream)
{
    int64_t i;

    if (!event_list_cnt)
        return;

    for (i = 0; i < event_list_cnt; i++)
    {
        if (event_list[i].codes_op.op_type == CODES_WK_OPEN)
        {
            if (event_list[i].codes_op.u.open.create_flag == 0)
            {
                fprintf(log_stream, "Rank %d OPEN %"PRIu64" (%lf - %lf)\n",
                        rank,
                        event_list[i].codes_op.u.open.file_id,
                        event_list[i].start_time,
                        event_list[i].end_time);
            }
            else
            {
                fprintf(log_stream, "Rank %d CREATE %"PRIu64" (%lf - %lf)\n",
                        rank,
                        event_list[i].codes_op.u.open.file_id,
                        event_list[i].start_time,
                        event_list[i].end_time);
            }
        }
        else if (event_list[i].codes_op.op_type == CODES_WK_CLOSE)
        {
            fprintf(log_stream, "Rank %d CLOSE %"PRIu64" (%lf - %lf)\n",
                    rank,
                    event_list[i].codes_op.u.close.file_id,
                    event_list[i].start_time,
                    event_list[i].end_time);
        }
        else if (event_list[i].codes_op.op_type == CODES_WK_READ)
        {
            fprintf(log_stream, "Rank %d READ %"PRIu64" [sz = %"PRId64", off = %"PRId64"] (%lf - %lf)\n",
                    rank,
                    event_list[i].codes_op.u.read.file_id,
                    (int64_t)event_list[i].codes_op.u.read.size,
                    (int64_t)event_list[i].codes_op.u.read.offset,
                    event_list[i].start_time,
                    event_list[i].end_time);
        }
        else if (event_list[i].codes_op.op_type == CODES_WK_WRITE)
        {
            fprintf(log_stream, "Rank %d WRITE %"PRIu64" [sz = %"PRId64", off = %"PRId64"] (%lf - %lf)\n",
                    rank,
                    event_list[i].codes_op.u.write.file_id,
                    (int64_t)event_list[i].codes_op.u.write.size,
                    (int64_t)event_list[i].codes_op.u.write.offset,
                    event_list[i].start_time,
                    event_list[i].end_time);
        }
        else if (event_list[i].codes_op.op_type == CODES_WK_BARRIER)
        {
            fprintf(log_stream, "****");
        }
    }

    return;
}

1572 1573 1574 1575 1576 1577 1578 1579
/*
 * Local variables:
 *  c-indent-level: 4
 *  c-basic-offset: 4
 * End:
 *
 * vim: ft=c ts=8 sts=4 sw=4 expandtab
 */