dragonfly.c 86.3 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21
#include "codes/quickhash.h"
22 23 24 25

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

26 27 28
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
29
#define DRAGONFLY_COLLECTIVE_DEBUG 0
30 31 32
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
33
#define WINDOW_LENGTH 0
34
#define DFLY_HASH_TABLE_SIZE 10000
35

36
// debugging parameters
37 38
#define TRACK -1
#define TRACK_MSG -1
39
#define PRINT_ROUTER_TABLE 1
40 41
#define DEBUG 0
#define USE_DIRECT_SCHEME 1
42

43 44 45
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

46
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
47

48 49
static double maxd(double a, double b) { return a < b ? b : a; }

50
/* minimal and non-minimal packet counts for adaptive routing*/
51
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
52

53 54 55 56 57 58
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
59 60

/* global variables for codes mapping */
61
static char lp_group_name[MAX_NAME_LENGTH];
62 63
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

64 65 66 67 68 69
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

70 71 72 73 74 75 76
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
77

78 79 80 81 82 83 84
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
85

86 87 88 89
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
108
    int total_terminals;
109
    int num_global_channels;
110 111 112 113
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

131 132 133 134 135 136 137 138
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
139
   uint64_t packet_counter;
140 141

   // Dragonfly specific parameters
142 143
   unsigned int router_id;
   unsigned int terminal_id;
144 145 146

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
147
   int num_vcs;
148 149
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
150 151 152
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
153 154 155 156
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
181 182 183

   const char * anno;
   const dragonfly_param *params;
184

185 186
   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;
187 188 189 190 191 192

   tw_stime   total_msg_time;
   long total_msg_size;
   long finished_msgs;

   char output_buf[512];
193
};
194

195 196 197 198 199
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
200
  T_SEND,
201
  T_BUFFER,
202 203
  R_SEND,
  R_ARRIVE,
204 205 206 207
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
231 232
    MINIMAL = 0,
    NON_MINIMAL,
233 234
    ADAPTIVE,
    PROG_ADAPTIVE
235 236 237 238 239 240
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
241 242
  
   int* global_channel; 
243
   
244 245
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
246
   tw_stime* cur_hist_start_time;
247 248 249 250 251
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
252
   
253 254
   int** vc_occupancy;
   int* link_traffic;
255 256 257

   const char * anno;
   const dragonfly_param *params;
258 259 260

   int* prev_hist_num;
   int* cur_hist_num;
261 262 263 264 265 266
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
267
static tw_stime         max_collective = 0;
268 269 270 271 272


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

273 274 275 276 277 278 279 280 281 282 283 284 285 286
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
301

302 303
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
304
{
305 306
	   return sizeof(terminal_message);
}
307

308 309 310 311 312 313 314 315 316 317 318 319
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
320 321
}

322 323 324 325 326 327 328 329 330 331 332 333 334
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
335

336 337 338 339 340 341 342 343 344 345
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
346 347 348
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
349
    }
350
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
368 369
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
384 385
}

386 387 388 389 390 391 392
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
393
    msg->msg_start_time = msg->msg_start_time;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
413
    msg->sender_mn_lp = cur_msg->sender_mn_lp;
414
    msg->total_size = cur_msg->total_size;
415
    msg->packet_size = cur_msg->packet_size;
416
    msg->message_id = cur_msg->message_id;
417 418 419 420 421 422 423 424 425 426 427 428
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
429 430 431
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
432

433 434 435 436 437 438 439 440
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

441
    p->num_vcs = 3;
442 443

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
444
    if(!p->local_vc_size) {
445 446 447 448 449
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
450
    if(!p->global_vc_size) {
451 452 453 454 455
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
456
    if(!p->cn_vc_size) {
457 458 459 460 461
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
462
    if(!p->chunk_size) {
463
        p->chunk_size = 512;
464
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
465 466 467
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
468
    if(!p->local_bandwidth) {
469 470 471 472 473
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
474
    if(!p->global_bandwidth) {
475 476 477 478 479
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
480
    if(!p->cn_bandwidth) {
481 482 483 484
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

485 486
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
487
            MAX_NAME_LENGTH);
488 489
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
490 491
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
492 493 494 495 496
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
497 498 499 500
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
501
        routing = -1;
502 503 504 505 506 507
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
508
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
509
    p->total_routers = p->num_groups * p->num_routers;
510
    p->total_terminals = p->total_routers * p->num_cn;
511 512 513 514 515 516 517
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
518
    
519 520 521 522
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
523 524 525

}

526 527 528 529
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
530
    all_params = malloc(num_params * sizeof(*all_params));
531 532

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
533
        const char * anno = anno_map->annotations[i].ptr;
534 535 536 537 538
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
539 540 541 542 543 544 545
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
546
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
547 548 549 550 551

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
552
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
553 554 555
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
556
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
557
    }
558

559 560
   /* print statistics */
   if(!g_tw_mynode)
561
   {	
562
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg time %lf \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000, avg_time);
563
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
564
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
565 566
 
  }
567 568
   return;
}
569

570 571 572
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
573 574 575 576 577
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;
661 662 663 664
   
   s->finished_msgs = 0;
   s->total_msg_time = 0.0;
   s->total_msg_size = 0;
665 666 667 668 669 670 671 672 673

   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

674 675 676 677 678
   s->rank_tbl = qhash_init(dragonfly_rank_hash_compare, quickhash_64bit_hash, DFLY_HASH_TABLE_SIZE);

   if(!s->rank_tbl)
       tw_error(TW_LOC, "\n Hash table not initialized! ");

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
   s->in_send_loop = 0;

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
695
{
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
738
   for(int i=0; i < p->radix; i++)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
758
        for(int j = 0; j < p->num_vcs; j++) {
759 760 761 762 763 764 765 766 767
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
768
//   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
769 770 771 772
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
773
       for(int i=0; i < p->num_global_channels; i++)
774 775 776 777 778 779 780 781 782 783 784 785 786
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
787 788 789
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
818 819 820 821 822 823 824 825 826 827
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
828
{
829 830 831 832 833
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

834 835 836
    xfer_to_nic_time = codes_local_latency(sender); 
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
837 838
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
839 840
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
841
    msg->total_size = req->msg_size;
842
    msg->sender_lp=req->src_lp;
843
    msg->sender_mn_lp = sender->gid;
844
    msg->packet_size = packet_size;
845
    msg->travel_start_time = tw_now(sender);
846 847 848
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
849
    msg->dest_terminal_id = req->dest_mn_lp;
850
    msg->message_id = req->msg_id;
851 852
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
853
    msg->magic = terminal_magic_num; 
854 855
    msg->msg_start_time = req->msg_start_time;

856 857
    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
858
	if(req->remote_event_size > 0)
859
	 {
860 861 862
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
863
	}
864
	if(req->self_event_size > 0)
865
	{
866 867 868
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
869 870
	}
     }
871
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
872
    tw_event_send(e_new);
873
    return xfer_to_nic_time;
874 875 876 877 878 879 880 881 882
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

883 884 885
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
886 887
		    int num_routers,
                    int total_groups)
888
{
889 890 891 892 893 894 895
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
896 897 898
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
899
  
900 901
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
902
  
903 904
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
905
  
906
  offset=(offset - 1) % (half_channel * num_routers);
907 908 909 910 911 912 913 914 915 916

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
917
#endif
918 919 920
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
921 922
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
923 924 925 926
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

927
  int dest = 0,  type = R_BUFFER;
928
  int is_terminal = 0;
929

930
  const dragonfly_param *p = s->params;
931 932 933 934 935 936 937 938 939 940 941 942 943
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

944
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
945
	
946 947 948 949 950 951 952 953 954 955 956 957 958 959
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
960
    buf_msg->vc_index = msg->saved_vc;
961 962 963 964
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
965

966 967
  tw_event_send(buf_e);
  return;
968 969
}

970
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
971
{
972 973 974
   term_rev_ecount++;
   term_ecount--;

975

976 977 978
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
979

980
   if(!num_chunks)
981
       num_chunks = 1;
982

983 984 985 986 987 988
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
989
        codes_local_latency_reverse(lp);
990 991 992 993
        s->in_send_loop = 0;
    }
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
994 995 996 997
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
998

999
/* generates packet at the current dragonfly compute node */
1000 1001 1002
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
1003

1004
  tw_stime ts;
1005

1006
  assert(lp->gid != msg->dest_terminal_id);
1007
  const dragonfly_param *p = s->params;
1008

1009

1010 1011
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
1012 1013
  if (msg->packet_size % s->params->chunk_size) 
      num_chunks++;
1014 1015 1016 1017

  if(!num_chunks)
    num_chunks = 1;

1018
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
1019 1020 1021 1022
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
1023

1024 1025 1026
  if(msg->packet_ID == TRACK && msg->message_id == TRACK_MSG)
      printf("\n Packet generated at terminal %d destination %d ", lp->gid, s->router_id);

1027 1028 1029 1030 1031
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
1047

1048 1049 1050 1051
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);
  }
1052

1053
  
1054 1055
  if(s->in_send_loop == 0) {
    bf->c5 = 1;
1056
    ts = codes_local_latency(lp);
1057 1058 1059 1060 1061 1062 1063 1064
    terminal_message *m;
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    s->in_send_loop = 1;
    tw_event_send(e);
  }
1065

1066 1067 1068 1069 1070 1071 1072 1073
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
1074
	  stat->max_event_size = total_event_size;
1075

1076 1077 1078
  return;
}

1079 1080
void packet_send_rc(terminal_state * s, tw_bf * bf, terminal_message * msg,
        tw_lp * lp)
1081
{
1082 1083
      term_ecount--;
      term_rev_ecount++;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
      if(bf->c1) {
        s->in_send_loop = 1;
        return;
      }
      
      s->terminal_available_time = msg->saved_available_time;
      tw_rand_reverse_unif(lp->rng);
      if(bf->c2) {
        codes_local_latency_reverse(lp);
      }
     
      s->packet_counter--;
      s->vc_occupancy[0] -= s->params->chunk_size;
1098

1099 1100 1101 1102 1103 1104 1105 1106
      create_prepend_to_terminal_message_list(s->terminal_msgs,
          s->terminal_msgs_tail, 0, msg);
      if(bf->c3) {
        tw_rand_reverse_unif(lp->rng);
      }
      if(bf->c4) {
        s->in_send_loop = 1;
      }
1107 1108
      if(bf->c5)
          codes_local_latency_reverse(lp);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    return;
}
/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  
  term_ecount++;
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
  terminal_message_list* cur_entry = s->terminal_msgs[0];

  if(s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size 
      || cur_entry == NULL) {
    bf->c1 = 1;
    s->in_send_loop = 0;
    //printf("[%d] Skipping send %d %d\n", lp->gid, cur_entry == NULL, 
    //  (s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size));
    return;
  }

1132
//  printf("\n Packet %ld sent at time %lf ", cur_entry->msg.packet_ID, tw_now(lp));
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  msg->saved_available_time = s->terminal_available_time;
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
  s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
  s->terminal_available_time += ts;

  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
      &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
      s->router_id, 0, &router_id);
  // we are sending an event to the router, so no method_event here
  e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);
  m = tw_event_data(e);
  memcpy(m, &cur_entry->msg, sizeof(terminal_message));
  if (m->remote_event_size_bytes){
    memcpy(model_net_method_get_edata(DRAGONFLY, m), cur_entry->event_data,
        m->remote_event_size_bytes);
  }
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
  m->origin_router_id = s->router_id;
  m->type = R_ARRIVE;
  m->src_terminal_id = lp->gid;
  m->vc_index = 0;
  m->last_hop = TERMINAL;
  m->intm_group_id = -1;
  m->magic = router_magic_num;
  m->path_type = -1;
  m->local_event_size_bytes = 0;
  m->local_id = s->terminal_id;
  tw_event_send(e);

  int num_chunks = cur_entry->msg.packet_size/s->params->chunk_size;
  if(cur_entry->msg.packet_size % s->params->chunk_size)
    num_chunks++;

1168 1169 1170
  if(!num_chunks)
      num_chunks = 1;

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
  if(cur_entry->msg.chunk_id == num_chunks - 1 && 
      (cur_entry->msg.local_event_size_bytes > 0)) {
    bf->c2 = 1;
    ts = codes_local_latency(lp); 
    tw_event *e_new = tw_event_new(cur_entry->msg.sender_lp, ts, lp);
    terminal_message* m_new = tw_event_data(e_new);
    void *local_event = (char*)cur_entry->event_data + 
      cur_entry->msg.remote_event_size_bytes;
    memcpy(m_new, local_event, cur_entry->msg.local_event_size_bytes);
    tw_event_send(e_new);
  }
  s->packet_counter++;
  s->vc_occupancy[0] += s->params->chunk_size;
  cur_entry = return_head(s->terminal_msgs, s->terminal_msgs_tail, 0); 
  copy_terminal_list_entry(cur_entry, msg);
  delete_terminal_message_list(cur_entry);

  cur_entry = s->terminal_msgs[0];
  
  if(cur_entry != NULL &&
    s->vc_occupancy[0] + s->params->chunk_size <= s->params->cn_vc_size) {
    bf->c3 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    tw_event_send(e);
  } else {
    bf->c4 = 1;
    s->in_send_loop = 0;
  }
1204 1205 1206 1207 1208
  if(cur_entry == NULL && s->vc_occupancy[0] + s->params->chunk_size <= s->params->cn_vc_size)
  {
     bf->c5 = 1;
     model_net_method_idle_event(codes_local_latency(lp), 0, lp);
  }
1209
  return;
1210
}
1211 1212

void packet_arrive_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
1213
{
1214 1215
      term_ecount--;
      term_rev_ecount++;
1216

1217 1218 1219 1220 1221 1222
      completed_packets--;
      if(msg->path_type == MINIMAL)
        minimal_count--;
      if(msg->path_type == NON_MINIMAL)
        nonmin_count--;

1223 1224 1225 1226 1227 1228
      struct dfly_hash_key key;
      key.message_id = msg->message_id;
      key.sender_id = msg->sender_lp;
      struct qhash_head * hash_link = NULL;
      hash_link = qhash_search(s->rank_tbl, &key);
      
1229
      if(bf->c1)
1230
      {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        mn_stats* stat;
        stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
        stat->recv_count--;
        stat->recv_bytes -= msg->packet_size;
        stat->recv_time -= tw_now(lp) - msg->travel_start_time;
        N_finished_packets--;
        dragonfly_total_time -= (tw_now(lp) - msg->travel_start_time);
        total_hops -= msg->my_N_hop;
        
        if(bf->c3)
          dragonfly_max_latency = msg->saved_available_time;
          
        if(bf->c8)
          {
            assert(hash_link);
            struct dfly_qhash_entry * tmp = NULL; 
            tmp = qhash_entry(hash_link, struct dfly_qhash_entry, hash_link);
            assert(tmp);
            tmp->remote_event_size = 0;
            free(tmp->remote_event_data);
          }
1252 1253 1254 1255
      }

        if(bf->c7)
        {
1256 1257 1258 1259
            s->finished_msgs--;
            s->total_msg_time -= (tw_now(lp) - msg->msg_start_time);
            s->total_msg_size -= msg->total_size;

1260 1261 1262
            assert(!hash_link);
            void *m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
            struct dfly_qhash_entry * d_entry = malloc(sizeof(struct dfly_qhash_entry));
1263
            d_entry->num_chunks = msg->saved_completed_chunks;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
            d_entry->key = key;
            d_entry->remote_event_data = NULL;
            d_entry->remote_event_size = 0;

            if(msg->saved_remote_esize > 0)
            {
                d_entry->remote_event_data = (void*)malloc(msg->saved_remote_esize);
                memcpy(d_entry->remote_event_data, m_data_src, msg->saved_remote_esize);
                d_entry->remote_event_size = msg->saved_remote_esize;
            }
            qhash_add(s->rank_tbl, &key, &(d_entry->hash_link));
1275 1276
        
                
1277 1278 1279 1280 1281 1282 1283 1284 1285
            int net_id = model_net_get_id(LP_METHOD_NM);
            
            if(bf->c4)
                model_net_event_rc2(lp, &msg->event_rc);
        }

      if(bf->c5)
      {
        /* re-initialize the element */
1286
        hash_link = qhash_search(s->rank_tbl, &key);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        assert(hash_link);
        qhash_del(hash_link);
        s->rank_tbl_pop--;
      }
      if(bf->c6)
      {
        hash_link = NULL;
        hash_link = qhash_search(s->rank_tbl, &key);
      
        assert(hash_link);
        struct dfly_qhash_entry * tmp2 = NULL; 
        tmp2 = qhash_entry(hash_link, struct dfly_qhash_entry, hash_link);
        assert(tmp2);
        tmp2->num_chunks--;
      }

1303 1304
      msg->my_N_hop--;
      tw_rand_reverse_unif(lp->rng);
1305

1306 1307
      return;
}
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
void send_remote_event(terminal_state * s, terminal_message * msg, tw_lp * lp, tw_bf * bf, char * event_data, int remote_event_size)
{
        void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
        tw_stime ts = g_tw_lookahead + bytes_to_ns(msg->remote_event_size_bytes, (1/s->params->cn_bandwidth));

        if (msg->is_pull){
            bf->c4 = 1;
            struct codes_mctx mc_dst =
                codes_mctx_set_global_direct(msg->sender_mn_lp);
            struct codes_mctx mc_src =
                codes_mctx_set_global_direct(lp->gid);
            int net_id = model_net_get_id(LP_METHOD_NM);
1320 1321 1322

            model_net_set_msg_param(MN_MSG_PARAM_START_TIME, MN_MSG_PARAM_START_TIME_VAL, &(msg->msg_start_time));
            
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
            model_net_event_mctx(net_id, &mc_src, &mc_dst, msg->category,
                    msg->sender_lp, msg->pull_size, ts,
                    remote_event_size, tmp_ptr, 0, NULL, lp);
        }
        else{
            tw_event * e = tw_event_new(msg->final_dest_gid, ts, lp);
            void * m_remote = tw_event_data(e);
            memcpy(m_remote, event_data, remote_event_size);
            tw_event_send(e); 
        }
}
1334 1335 1336 1337 1338 1339
/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {

  term_ecount++;

1340
  bf->c1 = 0;
1341 1342
  bf->c2 = 0;
  bf->c4 = 0;
1343 1344 1345 1346
  bf->c5 = 0;
  bf->c6 = 0;
  bf->c7 = 0;
  bf->c8 = 0;
1347

1348 1349 1350
  /* WE do not allow self messages through dragonfly */
  assert(lp->gid != msg->src_terminal_id);

1351
  int num_chunks = msg->packet_size / s->params->chunk_size;
1352 1353
  uint64_t total_chunks = msg->total_size / s->params->chunk_size;

1354 1355 1356
  if(msg->total_size % s->params->chunk_size)
      total_chunks++;

1357 1358 1359
  if(!total_chunks)
      total_chunks = 1;

1360 1361
  if (msg->packet_size % s->params->chunk_size)
    num_chunks++;
1362

1363
  if(!num_chunks)
1364
        num_chunks = 1;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

  completed_packets++;

  if(msg->path_type == MINIMAL)
    minimal_count++;

  if(msg->path_type == NON_MINIMAL)
    nonmin_count++;

  if(msg->path_type != MINIMAL && msg->path_type != NON_MINIMAL)
    printf("\n Wrong message path type %d ", msg->path_type);
1376

1377 1378
  msg->saved_remote_esize = 0;

1379
#if DEBUG == 1
1380 1381 1382
 if( msg->packet_ID == TRACK 
          && msg->chunk_id == num_chunks-1
          && msg->message_id == TRACK_MSG)
1383 1384 1385
  {
    printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
        tw_now(lp), (int)lp->gid, msg->packet_ID);
1386