model-net-mpi-replay.c 75 KB
Newer Older
1
2
3
4
5
6
7
/*
 * Copyright (C) 2014 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */
#include <ross.h>
#include <inttypes.h>
8
#include <sys/stat.h>
9
10
11
12
13
14
15
16

#include "codes/codes-workload.h"
#include "codes/codes.h"
#include "codes/configuration.h"
#include "codes/codes_mapping.h"
#include "codes/model-net.h"
#include "codes/rc-stack.h"
#include "codes/quicklist.h"
17
#include "codes/quickhash.h"
18
#include "codes/codes-jobmap.h"
19

20
/* turning on track lp will generate a lot of output messages */
21
#define MN_LP_NM "modelnet_dragonfly_custom"
22
#define CONTROL_MSG_SZ 64
23
#define TRACE -1
24
#define MAX_WAIT_REQS 512
25
#define CS_LP_DBG 0
26
#define EAGER_THRESHOLD 81920000
27
28
29
#define RANK_HASH_TABLE_SZ 2000
#define NOISE 3.0
#define NW_LP_NM "nw-lp"
30
31
32
#define lprintf(_fmt, ...) \
        do {if (CS_LP_DBG) printf(_fmt, __VA_ARGS__);} while (0)
#define MAX_STATS 65536
33
#define PAYLOAD_SZ 1024
34

35
36
37
static int msg_size_hash_compare(
            void *key, struct qhash_head *link);

38
int enable_msg_tracking = 0;
39
tw_lpid TRACK_LP = -1;
40
41

int unmatched = 0;
42
43
44
45
46
char workload_type[128];
char workload_file[8192];
char offset_file[8192];
static int wrkld_id;
static int num_net_traces = 0;
47
48
static int num_dumpi_traces = 0;

49
static int alloc_spec = 0;
50
51
static tw_stime self_overhead = 10.0;
static tw_stime mean_interval = 100000;
52
53
54

/* Doing LP IO*/
static char lp_io_dir[256] = {'\0'};
55
static char sampling_dir[32] = {'\0'};
56
57
58
59
static lp_io_handle io_handle;
static unsigned int lp_io_use_suffix = 0;
static int do_lp_io = 0;

60
61
62
63
/* variables for loading multiple applications */
char workloads_conf_file[8192];
char alloc_file[8192];
int num_traces_of_job[5];
64
65
66
tw_stime soft_delay_mpi = 2500;
tw_stime nic_delay = 1000;
tw_stime copy_per_byte_eager = 0.55;
67
68
69
70
71
char file_name_of_job[5][8192];

struct codes_jobmap_ctx *jobmap_ctx;
struct codes_jobmap_params_list jobmap_p;

72
73
/* Variables for Cortex Support */
/* Matthieu's additions start */
74
#ifdef ENABLE_CORTEX_PYTHON
75
76
77
static char cortex_file[512] = "\0";
static char cortex_class[512] = "\0";
static char cortex_gen[512] = "\0";
78
#endif
79
80
/* Matthieu's additions end */

81
82
typedef struct nw_state nw_state;
typedef struct nw_message nw_message;
83
typedef int32_t dumpi_req_id;
84
85
86

static int net_id = 0;
static float noise = 5.0;
87
88
89
static int num_nw_lps = 0, num_mpi_lps = 0;

static int num_syn_clients;
90

91
FILE * workload_log = NULL;
92
FILE * msg_size_log = NULL;
93
94
95
96
FILE * workload_agg_log = NULL;
FILE * workload_meta_log = NULL;

static uint64_t sample_bytes_written = 0;
97

98
99
100
long long num_bytes_sent=0;
long long num_bytes_recvd=0;

101
102
103
long long num_syn_bytes_sent = 0;
long long num_syn_bytes_recvd = 0;

104
105
106
107
108
109
double max_time = 0,  max_comm_time = 0, max_wait_time = 0, max_send_time = 0, max_recv_time = 0;
double avg_time = 0, avg_comm_time = 0, avg_wait_time = 0, avg_send_time = 0, avg_recv_time = 0;


/* runtime option for disabling computation time simulation */
static int disable_delay = 0;
110
111
112
static int enable_sampling = 0;
static double sampling_interval = 5000000;
static double sampling_end_time = 3000000000;
113
static int enable_debug = 0;
114

115
116
117
/* set group context */
struct codes_mctx group_ratio;

118
/* MPI_OP_GET_NEXT is for getting next MPI operation when the previous operation completes.
119
* MPI_SEND_ARRIVED is issued when a MPI message arrives at its destination (the message is transported by model-net and an event is invoked when it arrives.
120
121
122
123
124
125
126
* MPI_SEND_POSTED is issued when a MPI message has left the source LP (message is transported via model-net). */
enum MPI_NW_EVENTS
{
	MPI_OP_GET_NEXT=1,
	MPI_SEND_ARRIVED,
    MPI_SEND_ARRIVED_CB, // for tracking message times on sender
	MPI_SEND_POSTED,
127
128
129
130
131
132
    MPI_REND_ARRIVED,
    MPI_REND_ACK_ARRIVED,
    CLI_BCKGND_FIN,
    CLI_BCKGND_ARRIVE,
    CLI_BCKGND_GEN,
    CLI_NBR_FINISH,
133
134
};

135
136
137
138
struct mpi_workload_sample
{
    /* Sampling data */
    int nw_id;
139
    int app_id;
140
141
142
143
144
    unsigned long num_sends_sample;
    unsigned long num_bytes_sample;
    unsigned long num_waits_sample;
    double sample_end_time;
};
145
146
147
148
149
150
151
/* stores pointers of pending MPI operations to be matched with their respective sends/receives. */
struct mpi_msgs_queue
{
    int op_type;
    int tag;
    int source_rank;
    int dest_rank;
152
    uint64_t num_bytes;
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    tw_stime req_init_time;
	dumpi_req_id req_id;
    struct qlist_head ql;
};

/* stores request IDs of completed MPI operations (Isends or Irecvs) */
struct completed_requests
{
	dumpi_req_id req_id;
    struct qlist_head ql;
};

/* for wait operations, store the pending operation and number of completed waits so far. */
struct pending_waits
{
    int op_type;
169
    int32_t req_ids[MAX_WAIT_REQS];
170
	int num_completed;
171
172
	int count;
    tw_stime start_time;
173
174
175
    struct qlist_head ql;
};

176
177
178
179
180
181
182
183
184
struct msg_size_info
{
    int64_t msg_size;
    int num_msgs;
    tw_stime agg_latency;
    tw_stime avg_latency;
    struct qhash_head * hash_link;
    struct qlist_head ql; 
};
185
186
187
188
189
190
191
192
193
194
typedef struct mpi_msgs_queue mpi_msgs_queue;
typedef struct completed_requests completed_requests;
typedef struct pending_waits pending_waits;

/* state of the network LP. It contains the pointers to send/receive lists */
struct nw_state
{
	long num_events_per_lp;
	tw_lpid nw_id;
	short wrkld_end;
195
196
    int app_id;
    int local_rank;
197

198
199
200
    int is_finished;
    int neighbor_completed;

201
    struct rc_stack * processed_ops;
202
    struct rc_stack * matched_reqs;
203
204
205
206
207
208
209
210
211
212

    /* count of sends, receives, collectives and delays */
	unsigned long num_sends;
	unsigned long num_recvs;
	unsigned long num_cols;
	unsigned long num_delays;
	unsigned long num_wait;
	unsigned long num_waitall;
	unsigned long num_waitsome;

213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
	/* time spent by the LP in executing the app trace*/
	double start_time;
	double elapsed_time;
	/* time spent in compute operations */
	double compute_time;
	/* time spent in message send/isend */
	double send_time;
	/* time spent in message receive */
	double recv_time;
	/* time spent in wait operation */
	double wait_time;
	/* FIFO for isend messages arrived on destination */
	struct qlist_head arrival_queue;
	/* FIFO for irecv messages posted but not yet matched with send operations */
	struct qlist_head pending_recvs_queue;
	/* List of completed send/receive requests */
	struct qlist_head completed_reqs;
231

232
233
    tw_stime cur_interval_end;

234
235
    /* Pending wait operation */
    struct pending_waits * wait_op;
236

237
238
239
240
241
242
    /* Message size latency information */
    struct qhash_table * msg_sz_table;
    struct qlist_head msg_sz_list;

    /* quick hash for maintaining message latencies */

243
244
245
    unsigned long num_bytes_sent;
    unsigned long num_bytes_recvd;

246
247
248
    unsigned long syn_data;
    unsigned long gen_data;
    
249
250
251
252
    /* For sampling data */
    int sampling_indx;
    int max_arr_size;
    struct mpi_workload_sample * mpi_wkld_samples;
253
    char output_buf[512];
254
255
256
257
};

/* data for handling reverse computation.
* saved_matched_req holds the request ID of matched receives/sends for wait operations.
258
* ptr_match_op holds the matched MPI operation which are removed from the queues when a send is matched with the receive in forward event handler.
259
260
261
* network event being sent. op is the MPI operation issued by the network workloads API. rv_data holds the data for reverse computation (TODO: Fill this data structure only when the simulation runs in optimistic mode). */
struct nw_message
{
262
   // forward message handler
263
   int msg_type;
264
   int op_type;
265
   model_net_event_return event_rc;
266

267
268
269
   struct
   {
       tw_lpid src_rank;
270
       int dest_rank;
271
       int64_t num_bytes;
272
273
274
275
276
       int num_matched;
       int data_type;
       double sim_start_time;
       // for callbacks - time message was received
       double msg_send_time;
277
       int16_t req_id;
278
       int tag;
279
       int app_id;
280
281
282
283
284
285
286
287
288
       int found_match;
       short wait_completed;
   } fwd;
   struct
   {
       double saved_send_time;
       double saved_recv_time;
       double saved_wait_time;
       double saved_delay;
289
       int16_t saved_num_bytes;
290
       struct codes_workload_op * saved_op;
291
   } rc;
292
293
};

294
static void send_ack_back(nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp, mpi_msgs_queue * mpi_op);
295
296

static void send_ack_back_rc(nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
297
298
/* executes MPI isend and send operations */
static void codes_exec_mpi_send(
299
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp* lp, struct codes_workload_op * mpi_op, int is_rend);
300
301
/* execute MPI irecv operation */
static void codes_exec_mpi_recv(
302
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp, struct codes_workload_op * mpi_op);
303
304
/* reverse of mpi recv function. */
static void codes_exec_mpi_recv_rc(
305
        nw_state* s, tw_bf * bf, nw_message* m, tw_lp* lp);
306
307
/* execute the computational delay */
static void codes_exec_comp_delay(
308
        nw_state* s, nw_message * m, tw_lp* lp, struct codes_workload_op * mpi_op);
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/* gets the next MPI operation from the network-workloads API. */
static void get_next_mpi_operation(
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
/* reverse handler of get next mpi operation. */
static void get_next_mpi_operation_rc(
        nw_state* s, tw_bf * bf, nw_message * m, tw_lp * lp);
/* Makes a call to get_next_mpi_operation. */
static void codes_issue_next_event(tw_lp* lp);
/* reverse handler of next operation */
static void codes_issue_next_event_rc(tw_lp* lp);


///////////////////// HELPER FUNCTIONS FOR MPI MESSAGE QUEUE HANDLING ///////////////
/* upon arrival of local completion message, inserts operation in completed send queue */
/* upon arrival of an isend operation, updates the arrival queue of the network */
324
325
326
327
328
329
330
331
static void update_completed_queue(
        nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp, dumpi_req_id req_id);
/* reverse of the above function */
static void update_completed_queue_rc(
        nw_state*s,
        tw_bf * bf,
        nw_message * m,
        tw_lp * lp);
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
static void update_arrival_queue(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* reverse of the above function */
static void update_arrival_queue_rc(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* callback to a message sender for computing message time */
static void update_message_time(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);
/* reverse for computing message time */
static void update_message_time_rc(
        nw_state*s, tw_bf* bf, nw_message* m, tw_lp * lp);

/* conversion from seconds to eanaoseconds */
static tw_stime s_to_ns(tw_stime ns);

347
348
349
350
351
352
static void update_message_size_rc(
        struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
353
354
355
356
357
/*TODO: Complete reverse handler */
    (void)ns;
    (void)lp;
    (void)bf;
    (void)m;
358
}
359
360
361
362
363
364
365
366
367
368
/* update the message size */
static void update_message_size(
        struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m,
        mpi_msgs_queue * qitem,
        int is_eager,
        int is_send)
{
369
370
371
            (void)bf;
            (void)is_eager;

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
            struct qhash_head * hash_link = NULL;
            tw_stime msg_init_time = qitem->req_init_time;
        
            if(!ns->msg_sz_table)
                ns->msg_sz_table = qhash_init(msg_size_hash_compare, quickhash_64bit_hash, RANK_HASH_TABLE_SZ); 
            
            hash_link = qhash_search(ns->msg_sz_table, &(qitem->num_bytes));

            if(is_send)
                msg_init_time = m->fwd.sim_start_time;
            
            /* update hash table */
            if(!hash_link)
            {
                struct msg_size_info * msg_info = malloc(sizeof(struct msg_size_info));
                msg_info->msg_size = qitem->num_bytes;
                msg_info->num_msgs = 1;
389
                msg_info->agg_latency = tw_now(lp) - msg_init_time;
390
                msg_info->avg_latency = msg_info->agg_latency;
391
                qhash_add(ns->msg_sz_table, &(msg_info->msg_size), msg_info->hash_link);
392
393
394
395
396
397
398
                qlist_add(&msg_info->ql, &ns->msg_sz_list);
                //printf("\n Msg size %d aggregate latency %f num messages %d ", m->fwd.num_bytes, msg_info->agg_latency, msg_info->num_msgs);
            }
            else
            {
                struct msg_size_info * tmp = qhash_entry(hash_link, struct msg_size_info, hash_link);
                tmp->num_msgs++;
399
                tmp->agg_latency += tw_now(lp) - msg_init_time;  
400
401
402
403
404
405
406
407
408
409
                tmp->avg_latency = (tmp->agg_latency / tmp->num_msgs);
//                printf("\n Msg size %d aggregate latency %f num messages %d ", qitem->num_bytes, tmp->agg_latency, tmp->num_msgs);
            }
}
static void notify_background_traffic_rc(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
410
411
412
    (void)ns;
    (void)bf;
    (void)m;
413
414
415
416
417
418
419
420
421
    tw_rand_reverse_unif(lp->rng); 
}

static void notify_background_traffic(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
422
423
424
        (void)bf;
        (void)m;

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        struct codes_jobmap_id jid; 
        jid = codes_jobmap_to_local_id(ns->nw_id, jobmap_ctx);
        
        int num_jobs = codes_jobmap_get_num_jobs(jobmap_ctx); 
        
        for(int other_id = 0; other_id < num_jobs; other_id++)
        {
            if(other_id == jid.job)
                continue;

            struct codes_jobmap_id other_jid;
            other_jid.job = other_id;

            int num_other_ranks = codes_jobmap_get_num_ranks(other_id, jobmap_ctx);

440
            lprintf("\n Other ranks %d ", num_other_ranks);
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
            tw_stime ts = (1.1 * g_tw_lookahead) + tw_rand_exponential(lp->rng, mean_interval/10000);
            tw_lpid global_dest_id;
     
            for(int k = 0; k < num_other_ranks; k++)    
            {
                other_jid.rank = k;
                int intm_dest_id = codes_jobmap_to_global_id(other_jid, jobmap_ctx); 
                global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);

                tw_event * e;
                struct nw_message * m_new;  
                e = tw_event_new(global_dest_id, ts, lp);
                m_new = tw_event_data(e);
                m_new->msg_type = CLI_BCKGND_FIN;
                tw_event_send(e);   
            }
        }
        return;
}
static void notify_neighbor_rc(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
       if(bf->c0)
       {
            notify_background_traffic_rc(ns, lp, bf, m);
            return;
       }
   
       if(bf->c1)
       {
          tw_rand_reverse_unif(lp->rng); 
       }
} 
static void notify_neighbor(
	    struct nw_state * ns,
        tw_lp * lp,
        tw_bf * bf,
        struct nw_message * m)
{
    if(ns->local_rank == num_dumpi_traces - 1 
            && ns->is_finished == 1
            && ns->neighbor_completed == 1)
    {
        printf("\n All workloads completed, notifying background traffic ");
        bf->c0 = 1;
        notify_background_traffic(ns, lp, bf, m);
        return;
    }
    
    struct codes_jobmap_id nbr_jid;
    nbr_jid.job = ns->app_id;
    tw_lpid global_dest_id;

    if(ns->is_finished == 1 && (ns->neighbor_completed == 1 || ns->local_rank == 0))
    {
        bf->c1 = 1;

        printf("\n Local rank %d notifying neighbor %d ", ns->local_rank, ns->local_rank+1);
        tw_stime ts = (1.1 * g_tw_lookahead) + tw_rand_exponential(lp->rng, mean_interval/10000);
        nbr_jid.rank = ns->local_rank + 1;
        
        /* Send a notification to the neighbor about completion */
        int intm_dest_id = codes_jobmap_to_global_id(nbr_jid, jobmap_ctx); 
        global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);
       
        tw_event * e;
        struct nw_message * m_new;  
        e = tw_event_new(global_dest_id, ts, lp);
        m_new = tw_event_data(e); 
        m_new->msg_type = CLI_NBR_FINISH;
        tw_event_send(e);   
    }
}
void finish_bckgnd_traffic_rc(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
523
524
525
526
        (void)b;
        (void)msg;
        (void)lp;

527
528
529
530
531
532
533
534
535
        ns->is_finished = 0;
        return;
}
void finish_bckgnd_traffic(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
536
537
        (void)b;
        (void)msg;
538
        ns->is_finished = 1;
539
        lprintf("\n LP %llu completed sending data %lu completed at time %lf ", lp->gid, ns->gen_data, tw_now(lp));
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        return;
}

void finish_nbr_wkld_rc(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
    ns->neighbor_completed = 0;
    
    notify_neighbor_rc(ns, lp, b, msg);
}

void finish_nbr_wkld(
    struct nw_state * ns,
    tw_bf * b,
    struct nw_message * msg,
    tw_lp * lp)
{
    printf("\n Workload completed, notifying neighbor ");
    ns->neighbor_completed = 1;

    notify_neighbor(ns, lp, b, msg);
}
static void gen_synthetic_tr_rc(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
    if(bf->c0)
        return;

    model_net_event_rc2(lp, &m->event_rc);
    s->gen_data -= PAYLOAD_SZ;

    num_syn_bytes_sent -= PAYLOAD_SZ;
    tw_rand_reverse_unif(lp->rng);
    tw_rand_reverse_unif(lp->rng);

}

/* generate synthetic traffic */
static void gen_synthetic_tr(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
    if(s->is_finished == 1)
    {
        bf->c0 = 1;
        return;
    }

    /* Get job information */
    tw_lpid global_dest_id;

    struct codes_jobmap_id jid;
    jid = codes_jobmap_to_local_id(s->nw_id, jobmap_ctx); 

    int num_clients = codes_jobmap_get_num_ranks(jid.job, jobmap_ctx);
    int dest_svr = tw_rand_integer(lp->rng, 0, num_clients - 1);

    if(dest_svr == s->local_rank)
    {
       dest_svr = (s->local_rank + 1) % num_clients;
    }
   
    jid.rank = dest_svr;

    int intm_dest_id = codes_jobmap_to_global_id(jid, jobmap_ctx); 
    global_dest_id = codes_mapping_get_lpid_from_relative(intm_dest_id, NULL, NW_LP_NM, NULL, 0);

    nw_message remote_m;
    remote_m.fwd.sim_start_time = tw_now(lp);
    remote_m.fwd.dest_rank = dest_svr;
    remote_m.msg_type = CLI_BCKGND_ARRIVE;
    remote_m.fwd.num_bytes = PAYLOAD_SZ;
    remote_m.fwd.app_id = s->app_id;
    remote_m.fwd.src_rank = s->local_rank;

    m->event_rc = model_net_event(net_id, "synthetic-tr", global_dest_id, PAYLOAD_SZ, 0.0, 
            sizeof(nw_message), (const void*)&remote_m, 
            0, NULL, lp);
    
    s->gen_data += PAYLOAD_SZ;
    num_syn_bytes_sent += PAYLOAD_SZ; 

    /* New event after MEAN_INTERVAL */  
    tw_stime ts = mean_interval  + tw_rand_exponential(lp->rng, NOISE); 
    tw_event * e;
    nw_message * m_new;
    e = tw_event_new(lp->gid, ts, lp);
    m_new = tw_event_data(e);
    m_new->msg_type = CLI_BCKGND_GEN;
    tw_event_send(e);
}

void arrive_syn_tr_rc(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
634
635
636
    (void)bf;
    (void)m;
    (void)lp;
637
638
639
640
641
642
643
//    printf("\n Data arrived %d total data %ld ", m->fwd.num_bytes, s->syn_data);
    int data = m->fwd.num_bytes;
    s->syn_data -= data;
    num_syn_bytes_recvd -= data;
}
void arrive_syn_tr(nw_state * s, tw_bf * bf, nw_message * m, tw_lp * lp)
{
644
645
646
    (void)bf;
    (void)lp;

647
648
649
650
651
//    printf("\n Data arrived %d total data %ld ", m->fwd.num_bytes, s->syn_data);
    int data = m->fwd.num_bytes;
    s->syn_data += data;
    num_syn_bytes_recvd += data;
}
652
/* Debugging functions, may generate unused function warning */
653
static void print_waiting_reqs(int32_t * reqs, int count)
654
{
655
    lprintf("\n Waiting reqs: %d count", count);
656
657
    int i;
    for(i = 0; i < count; i++ )
658
        lprintf(" %d ", reqs[i]);
659
}
660
661
662
663
664
665
666
667
668
669
670
671
static void print_msgs_queue(struct qlist_head * head, int is_send)
{
    if(is_send)
        printf("\n Send msgs queue: ");
    else
        printf("\n Recv msgs queue: ");

    struct qlist_head * ent = NULL;
    mpi_msgs_queue * current = NULL;
    qlist_for_each(ent, head)
       {
            current = qlist_entry(ent, mpi_msgs_queue, ql);
672
            printf(" \n Source %d Dest %d bytes %llu tag %d ", current->source_rank, current->dest_rank, current->num_bytes, current->tag);
673
674
       }
}
675
676
677
678
679
680
681
682
static void print_completed_queue(struct qlist_head * head)
{
    printf("\n Completed queue: ");
      struct qlist_head * ent = NULL;
      struct completed_requests* current = NULL;
      qlist_for_each(ent, head)
       {
            current = qlist_entry(ent, completed_requests, ql);
683
            printf(" %d ", current->req_id);
684
685
       }
}
686
static int clear_completed_reqs(nw_state * s,
687
        tw_lp * lp,
688
        int32_t * reqs, int count)
689
{
690
691
692
    (void)s;
    (void)lp;

693
    int i, matched = 0;
694

695
696
697
    for( i = 0; i < count; i++)
    {
      struct qlist_head * ent = NULL;
698
699
700
      struct completed_requests * current = NULL;
      struct completed_requests * prev = NULL;

701
702
      qlist_for_each(ent, &s->completed_reqs)
       {
703
704
705
706
707
            current = qlist_entry(ent, completed_requests, ql);
            
            if(prev)
              rc_stack_push(lp, prev, free, s->matched_reqs);
            
708
709
            if(current->req_id == reqs[i])
            {
710
                ++matched;
711
                qlist_del(&current->ql);
712
                prev = current;
713
            }
714
715
            else
                prev = NULL;
716
       }
717
718
719

      if(prev)
          rc_stack_push(lp, prev, free, s->matched_reqs);
720
    }
721
    return matched;
722
}
723
static void add_completed_reqs(nw_state * s,
724
725
        tw_lp * lp,
        int count)
726
{
727
    (void)lp;
728
729
730
    int i;
    for( i = 0; i < count; i++)
    {
731
732
       struct completed_requests * req = rc_stack_pop(s->matched_reqs);
       qlist_add(&req->ql, &s->completed_reqs);
733
734
    }
}
735

736
737
738
739
740
741
/* helper function - maps an MPI rank to an LP id */
static tw_lpid rank_to_lpid(int rank)
{
    return codes_mapping_get_lpid_from_relative(rank, NULL, "nw-lp", NULL, 0);
}

742
static int notify_posted_wait(nw_state* s,
743
        tw_bf * bf, nw_message * m, tw_lp * lp,
744
        dumpi_req_id completed_req)
745
{
746
747
    (void)bf;

748
749
    struct pending_waits* wait_elem = s->wait_op;
    int wait_completed = 0;
750

751
    m->fwd.wait_completed = 0;
752

753
754
    if(!wait_elem)
        return 0;
755

756
    int op_type = wait_elem->op_type;
757

758
759
760
761
762
    if(op_type == CODES_WK_WAIT &&
            (wait_elem->req_ids[0] == completed_req))
    {
            wait_completed = 1;
    }
763
764
    else if(op_type == CODES_WK_WAITALL
            || op_type == CODES_WK_WAITANY
765
766
767
768
769
770
            || op_type == CODES_WK_WAITSOME)
    {
        int i;
        for(i = 0; i < wait_elem->count; i++)
        {
            if(wait_elem->req_ids[i] == completed_req)
771
            {
772
                wait_elem->num_completed++;
773
                if(wait_elem->num_completed > wait_elem->count)
774
                    printf("\n Num completed %d count %d LP %llu ",
775
776
777
                            wait_elem->num_completed,
                            wait_elem->count,
                            lp->gid);
778
779
//                if(wait_elem->num_completed > wait_elem->count)
//                    tw_lp_suspend(lp, 1, 0);
780

781
                if(wait_elem->num_completed == wait_elem->count)
782
                {
783
                    if(enable_debug)
784
                        fprintf(workload_log, "\n(%lf) APP ID %d MPI WAITALL COMPLETED AT %llu ", tw_now(lp), s->app_id, s->nw_id);
785
                    wait_completed = 1;
786
                }
787

788
                m->fwd.wait_completed = 1;
789
            }
790
        }
791
    }
792
    return wait_completed;
793
}
794

795
/* reverse handler of MPI wait operation */
796
static void codes_exec_mpi_wait_rc(nw_state* s, tw_lp* lp)
797
{
798
    if(s->wait_op)
799
     {
800
801
802
         struct pending_waits * wait_op = s->wait_op;
         free(wait_op);
         s->wait_op = NULL;
803
804
805
806
     }
   else
    {
        codes_issue_next_event_rc(lp);
807
        completed_requests * qi = rc_stack_pop(s->processed_ops);
808
        qlist_add(&qi->ql, &s->completed_reqs);
809
    }
810
    return;
811
}
812

813
/* execute MPI wait operation */
814
static void codes_exec_mpi_wait(nw_state* s, tw_lp* lp, struct codes_workload_op * mpi_op)
815
{
816
817
    /* check in the completed receives queue if the request ID has already been completed.*/
    assert(!s->wait_op);
818
    dumpi_req_id req_id = mpi_op->u.wait.req_id;
819
    struct completed_requests* current = NULL;
820

821
822
823
824
825
826
827
    struct qlist_head * ent = NULL;
    qlist_for_each(ent, &s->completed_reqs)
    {
        current = qlist_entry(ent, completed_requests, ql);
        if(current->req_id == req_id)
        {
            qlist_del(&current->ql);
828
            rc_stack_push(lp, current, free, s->processed_ops);
829
830
831
832
            codes_issue_next_event(lp);
            return;
        }
    }
833
834
835
836
837
    /* If not, add the wait operation in the pending 'waits' list. */
    struct pending_waits* wait_op = malloc(sizeof(struct pending_waits));
    wait_op->op_type = mpi_op->op_type;
    wait_op->req_ids[0] = req_id;
    wait_op->count = 1;
838
839
    wait_op->num_completed = 0;
    wait_op->start_time = tw_now(lp);
840
    s->wait_op = wait_op;
841

842
    return;
843
844
}

845
static void codes_exec_mpi_wait_all_rc(
846
        nw_state* s,
847
848
        tw_bf * bf,
        nw_message * m,
849
        tw_lp* lp)
850
{
851
852
853
854
855
856
857
858
859
860
861
  if(bf->c1)
  {
    int sampling_indx = s->sampling_indx;
    s->mpi_wkld_samples[sampling_indx].num_waits_sample--;

    if(bf->c2)
    {
        s->cur_interval_end -= sampling_interval;
        s->sampling_indx--;
    }
  }
862
863
864
865
866
867
868
869
  if(s->wait_op)
  {
      struct pending_waits * wait_op = s->wait_op;
      free(wait_op);
      s->wait_op = NULL;
  }
  else
  {
870
      add_completed_reqs(s, lp, m->fwd.num_matched);
871
872
873
      codes_issue_next_event_rc(lp);
  }
  return;
874
}
875

876
static void codes_exec_mpi_wait_all(
877
        nw_state* s,
878
879
        tw_bf * bf,
        nw_message * m,
880
        tw_lp* lp,
881
        struct codes_workload_op * mpi_op)
882
{
883
  if(enable_debug)
884
    fprintf(workload_log, "\n MPI WAITALL POSTED AT %llu ", s->nw_id);
885

886
887
888
889
890
891
892
893
  if(enable_sampling)
  {
    bf->c1 = 1;
    if(tw_now(lp) >= s->cur_interval_end)
    {
        bf->c2 = 1;
        int indx = s->sampling_indx;
        s->mpi_wkld_samples[indx].nw_id = s->nw_id;
894
        s->mpi_wkld_samples[indx].app_id = s->app_id;
895
896
897
898
899
900
        s->mpi_wkld_samples[indx].sample_end_time = s->cur_interval_end;
        s->cur_interval_end += sampling_interval;
        s->sampling_indx++;
    }
    if(s->sampling_indx >= MAX_STATS)
    {
901
        struct mpi_workload_sample * tmp = calloc((MAX_STATS + s->max_arr_size), sizeof(struct mpi_workload_sample));
902
903
904
905
906
907
908
909
        memcpy(tmp, s->mpi_wkld_samples, s->sampling_indx);
        free(s->mpi_wkld_samples);
        s->mpi_wkld_samples = tmp;
        s->max_arr_size += MAX_STATS;
    }
    int indx = s->sampling_indx;
    s->mpi_wkld_samples[indx].num_waits_sample++;
  }
910
  int count = mpi_op->u.waits.count;
911
912
  /* If the count is not less than max wait reqs then stop */
  assert(count < MAX_WAIT_REQS);
913

914
  int i = 0, num_matched = 0;
915
  m->fwd.num_matched = 0;
916

917
  if(lp->gid == TRACK_LP)
918
  {
919
      printf("\n MPI Wait all posted ");
920
921
      print_waiting_reqs(mpi_op->u.waits.req_ids, count);
      print_completed_queue(&s->completed_reqs);
922
  }
923
      /* check number of completed irecvs in the completion queue */
924
925
926
927
928
929
930
  for(i = 0; i < count; i++)
  {
      dumpi_req_id req_id = mpi_op->u.waits.req_ids[i];
      struct qlist_head * ent = NULL;
      struct completed_requests* current = NULL;
      qlist_for_each(ent, &s->completed_reqs)
       {
931
            current = qlist_entry(ent, struct completed_requests, ql);
932
933
934
935
            if(current->req_id == req_id)
                num_matched++;
       }
  }
936

937
  m->fwd.found_match = num_matched;
938
939
940
941
  if(num_matched == count)
  {
    /* No need to post a MPI Wait all then, issue next event */
      /* Remove all completed requests from the list */
942
943
944
      m->fwd.num_matched = clear_completed_reqs(s, lp, mpi_op->u.waits.req_ids, count);
      struct pending_waits* wait_op = s->wait_op;
      free(wait_op);
945
946
      s->wait_op = NULL;
      codes_issue_next_event(lp);
947
948
  }
  else
949
950
951
952
953
954
955
956
957
958
959
  {
      /* If not, add the wait operation in the pending 'waits' list. */
	  struct pending_waits* wait_op = malloc(sizeof(struct pending_waits));
	  wait_op->count = count;
      wait_op->op_type = mpi_op->op_type;
      assert(count < MAX_WAIT_REQS);

      for(i = 0; i < count; i++)
          wait_op->req_ids[i] =  mpi_op->u.waits.req_ids[i];

	  wait_op->num_completed = num_matched;
960
	  wait_op->start_time = tw_now(lp);
961
      s->wait_op = wait_op;
962
  }
963
964
  return;
}
965

966
967
/* search for a matching mpi operation and remove it from the list.
 * Record the index in the list from where the element got deleted.
968
 * Index is used for inserting the element once again in the queue for reverse computation. */
969
static int rm_matching_rcv(nw_state * ns,
970
        tw_bf * bf,
971
972
        nw_message * m,
        tw_lp * lp,
973
        mpi_msgs_queue * qitem)
974
975
{
    int matched = 0;
976
    int index = 0;
977
978
    struct qlist_head *ent = NULL;
    mpi_msgs_queue * qi = NULL;
979

980
981
    qlist_for_each(ent, &ns->pending_recvs_queue){
        qi = qlist_entry(ent, mpi_msgs_queue, ql);
982
983
        if(//(qi->num_bytes == qitem->num_bytes)
                //&& 
984
               ((qi->tag == qitem->tag) || qi->tag == -1)
985
                && ((qi->source_rank == qitem->source_rank) || qi->source_rank == -1))
986
987
        {
            matched = 1;
988
            qitem->num_bytes = qi->num_bytes;
989
990
            break;
        }
991
        ++index;
992
    }
993

994
995
    if(matched)
    {
996
997
998
999
1000
        if(enable_msg_tracking && qitem->num_bytes < EAGER_THRESHOLD)
        {
            update_message_size(ns, lp, bf, m, qitem, 1, 1);
        }
        if(qitem->num_bytes >= EAGER_THRESHOLD)
For faster browsing, not all history is shown. View entire blame