dragonfly.c 88.1 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21
#include "codes/quickhash.h"
22
#include "codes/rc-stack.h"
23 24 25 26

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

27 28 29
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
30
#define DRAGONFLY_COLLECTIVE_DEBUG 0
31 32 33
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
34
#define WINDOW_LENGTH 0
35
#define DFLY_HASH_TABLE_SIZE 65536
36

37
// debugging parameters
38 39
#define TRACK -1
#define TRACK_MSG -1
40
#define PRINT_ROUTER_TABLE 1
Misbah Mubarak's avatar
Misbah Mubarak committed
41
#define DEBUG 0
42
#define USE_DIRECT_SCHEME 1
43

44 45 46
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

47
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
48

49 50
static double maxd(double a, double b) { return a < b ? b : a; }

51
/* minimal and non-minimal packet counts for adaptive routing*/
52
static unsigned int minimal_count=0, nonmin_count=0;
53

54 55 56 57 58 59
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
60 61

/* global variables for codes mapping */
62
static char lp_group_name[MAX_NAME_LENGTH];
63 64
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

65 66 67 68 69 70
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

71 72 73 74 75 76 77
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
78

79 80 81 82 83 84 85
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
86

87 88 89 90
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
109
    int total_terminals;
110
    int num_global_channels;
111 112 113 114
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
115 116
};

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

132 133 134 135 136 137 138 139
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
140
   uint64_t packet_counter;
141 142

   // Dragonfly specific parameters
143 144
   unsigned int router_id;
   unsigned int terminal_id;
145 146 147

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
148
   int num_vcs;
149
   tw_stime terminal_available_time;
150 151 152
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
153 154 155 156
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

178
   struct rc_stack * st;
179 180
   int issueIdle;
   int terminal_length;
181

182 183 184
   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
185 186 187

   const char * anno;
   const dragonfly_param *params;
188

189 190 191
   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;

192 193 194
   tw_stime   total_msg_time;
   long total_msg_size;
   long finished_msgs;
195
   long finished_packets;
196

197
   char output_buf[512];
198
};
199

200 201 202 203 204
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
205
  T_SEND,
206
  T_BUFFER,
207 208
  R_SEND,
  R_ARRIVE,
209 210 211 212
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
236 237
    MINIMAL = 0,
    NON_MINIMAL,
238 239
    ADAPTIVE,
    PROG_ADAPTIVE
240 241 242 243 244 245
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
246 247
  
   int* global_channel; 
248
   
249
   tw_stime* next_output_available_time;
250
   tw_stime* cur_hist_start_time;
251 252 253 254 255
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
256
   
257 258
   int** vc_occupancy;
   int* link_traffic;
259 260 261

   const char * anno;
   const dragonfly_param *params;
262 263 264

   int* prev_hist_num;
   int* cur_hist_num;
265 266 267 268
};

static short routing = MINIMAL;

269 270
static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
271
static tw_stime         max_collective = 0;
272

273

274 275
static long long       total_hops = 0;
static long long       N_finished_packets = 0;
276 277 278
static long long       total_msg_sz = 0;
static long long       N_finished_msgs = 0;
static long long       N_finished_chunks = 0;
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
308

309 310
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
311
{
312 313
	   return sizeof(terminal_message);
}
314

315 316 317 318 319 320
static void free_tmp(void * ptr)
{
    struct dfly_qhash_entry * dfly = ptr; 
    free(dfly->remote_event_data);
    free(dfly);
}
321 322 323 324 325 326 327 328 329 330 331 332
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
348

349 350 351 352 353 354 355 356 357 358
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
359 360 361
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
362
    }
363
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
381 382
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
397 398
}

399 400 401 402 403 404 405
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
406
    msg->msg_start_time = msg->msg_start_time;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
426 427
    msg->sender_mn_lp = cur_msg->sender_mn_lp;
    msg->total_size = cur_msg->total_size;
428
    msg->packet_size = cur_msg->packet_size;
429
    msg->message_id = cur_msg->message_id;
430 431 432 433 434 435 436 437 438 439 440 441
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
442 443 444
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
445

446 447 448 449 450 451 452 453
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

454
    p->num_vcs = 3;
455 456

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
457
    if(!p->local_vc_size) {
458 459 460 461 462
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
463
    if(!p->global_vc_size) {
464 465 466 467 468
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
469
    if(!p->cn_vc_size) {
470 471 472 473 474
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
475
    if(!p->chunk_size) {
476
        p->chunk_size = 512;
477
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
478 479 480
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
481
    if(!p->local_bandwidth) {
482 483 484 485 486
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
487
    if(!p->global_bandwidth) {
488 489 490 491 492
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
493
    if(!p->cn_bandwidth) {
494 495 496 497
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

498 499
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
500
            MAX_NAME_LENGTH);
501 502
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
503 504
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
505 506 507 508 509
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
510 511 512 513
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
514
        routing = -1;
515 516 517 518 519 520
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
521
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
522
    p->total_routers = p->num_groups * p->num_routers;
523
    p->total_terminals = p->total_routers * p->num_cn;
524 525 526 527 528 529 530
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
531
    
532 533 534 535
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
536 537 538

}

539 540 541 542
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
543
    all_params = malloc(num_params * sizeof(*all_params));
544 545

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
546
        const char * anno = anno_map->annotations[i].ptr;
547 548 549 550 551
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
552 553 554 555 556
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
557 558
   long long avg_hops, total_finished_packets, total_finished_chunks;
   long long total_finished_msgs, final_msg_sz;
559
   tw_stime avg_time, max_time;
560
   int total_minimal_packets, total_nonmin_packets;
561 562 563

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
564 565 566
   MPI_Reduce( &N_finished_msgs, &total_finished_msgs, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_chunks, &total_finished_chunks, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &total_msg_sz, &final_msg_sz, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
567 568
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
569
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
570 571 572 573
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
574

575 576
   /* print statistics */
   if(!g_tw_mynode)
577
   {	
578
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg message size %lf bytes finished messages %ld \n", (float)avg_hops/total_finished_chunks, avg_time/(total_finished_packets*1000), max_time/1000, (float)total_msg_sz/N_finished_msgs, N_finished_msgs);
579
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
Jonathan Jenkins's avatar
Jonathan Jenkins committed
580
              printf("\n ADAPTIVE ROUTING STATS: %d percent chunks routed minimally %d percent chunks routed non-minimally completed packets %lld ", total_minimal_packets, total_nonmin_packets, total_finished_chunks);
581 582
 
  }
583 584
   return;
}
585

586 587 588
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
589 590 591 592 593
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;
677
   
678 679 680
   s->finished_msgs = 0;
   s->total_msg_time = 0.0;
   s->total_msg_size = 0;
681

682
   rc_stack_create(&s->st);
683 684 685 686 687 688 689 690
   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

691 692 693 694 695
   s->rank_tbl = qhash_init(dragonfly_rank_hash_compare, quickhash_64bit_hash, DFLY_HASH_TABLE_SIZE);

   if(!s->rank_tbl)
       tw_error(TW_LOC, "\n Hash table not initialized! ");

696 697 698 699 700 701
   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
702
   s->terminal_length = 0;
703
   s->in_send_loop = 0;
704
   s->issueIdle = 0;
705 706 707 708 709 710 711 712 713

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
714
{
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
756
   for(int i=0; i < p->radix; i++)
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
775
        for(int j = 0; j < p->num_vcs; j++) {
776 777 778 779 780 781 782 783 784
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
785
//   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
786 787 788 789
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
790
       for(int i=0; i < p->num_global_channels; i++)
791 792 793 794 795 796 797 798 799 800 801 802 803
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
804 805 806
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
835 836 837 838 839 840 841 842 843 844
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
845
{
846 847 848 849 850
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

851 852 853
    xfer_to_nic_time = codes_local_latency(sender); 
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
854 855
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
856 857
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
858
    msg->total_size = req->msg_size;
859
    msg->sender_lp=req->src_lp;
860
    msg->sender_mn_lp = sender->gid;
861
    msg->packet_size = packet_size;
862
    msg->travel_start_time = tw_now(sender);
863 864 865
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
866
    msg->dest_terminal_id = req->dest_mn_lp;
867
    msg->message_id = req->msg_id;
868 869
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
870
    msg->magic = terminal_magic_num; 
871 872
    msg->msg_start_time = req->msg_start_time;

873 874
    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
875
	if(req->remote_event_size > 0)
876
	 {
877 878 879
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
880
	}
881
	if(req->self_event_size > 0)
882
	{
883 884 885
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
886 887
	}
     }
888
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
889
    tw_event_send(e_new);
890
    return xfer_to_nic_time;
891 892 893 894 895 896 897 898 899
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

900 901 902
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
903 904
		    int num_routers,
                    int total_groups)
905
{
906 907 908 909 910 911 912
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
913 914 915
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
916
  
917 918
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
919
  
920 921
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
922
  
923
  offset=(offset - 1) % (half_channel * num_routers);
924 925 926 927 928 929 930 931 932 933

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
934
#endif
935 936 937
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
938 939
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
940 941 942 943
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

944
  int dest = 0,  type = R_BUFFER;
945
  int is_terminal = 0;
946

947
  const dragonfly_param *p = s->params;
948 949 950 951 952 953 954 955 956 957 958 959 960
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

961
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
962
	
963 964 965 966 967 968 969 970 971 972 973 974 975 976
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
977
    buf_msg->vc_index = msg->saved_vc;
978 979 980 981
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
982

983 984
  tw_event_send(buf_e);
  return;
985 986
}

987
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
988
{
989 990 991
   term_rev_ecount++;
   term_ecount--;

992
   tw_rand_reverse_unif(lp->rng);
993

994 995 996
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
997

998
   if(!num_chunks)
999
       num_chunks = 1;
1000

1001 1002 1003 1004
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
1005
        s->terminal_length -= s->params->chunk_size;
1006 1007
   }
    if(bf->c5) {
1008
        codes_local_latency_reverse(lp);
1009 1010
        s->in_send_loop = 0;
    }
1011 1012 1013
      if(bf->c11) {
        s->issueIdle = 0;
      }
1014 1015
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
1016 1017 1018 1019
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
1020

1021
/* generates packet at the current dragonfly compute node */
1022 1023 1024
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
1025

1026
  tw_stime ts, nic_ts;
1027

1028
  assert(lp->gid != msg->dest_terminal_id);
1029
  const dragonfly_param *p = s->params;
1030

1031 1032
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
1033 1034
  if (msg->packet_size % s->params->chunk_size) 
      num_chunks++;
1035 1036 1037 1038

  if(!num_chunks)
    num_chunks = 1;

1039 1040
  nic_ts = g_tw_lookahead + s->params->cn_delay * msg->packet_size + tw_rand_unif(lp->rng);
  
1041
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
1042 1043 1044 1045
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
1046

1047
  if(msg->packet_ID == TRACK && msg->message_id == TRACK_MSG)
Jonathan Jenkins's avatar
Jonathan Jenkins committed
1048
      printf("\n Packet generated at terminal %lu destination %d ", lp->gid, s->router_id);
1049

1050 1051 1052 1053 1054
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
1055