dragonfly.c 84.4 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12
#include <ross.h>

13
#include "codes/jenkins-hash.h"
14 15 16 17
#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
18 19
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
20
#include "sys/file.h"
21
#include "codes/quickhash.h"
22 23 24

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0
25
#define MAX_GEN_PACKETS 2000000
26

27 28 29
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
30
#define DRAGONFLY_COLLECTIVE_DEBUG 0
31 32 33
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0
34
#define WINDOW_LENGTH 0
35
#define DFLY_HASH_TABLE_SIZE 10000
36

37
// debugging parameters
38
#define TRACK 10
39
#define PRINT_ROUTER_TABLE 1
40
#define DEBUG 0
41
#define USE_DIRECT_SCHEME 0
42

43 44 45
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

46
long term_ecount, router_ecount, term_rev_ecount, router_rev_ecount;
47

48 49
static double maxd(double a, double b) { return a < b ? b : a; }

50
/* minimal and non-minimal packet counts for adaptive routing*/
51
static unsigned int minimal_count=0, nonmin_count=0, completed_packets = 0;
52

53 54 55 56 57 58
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
59 60

/* global variables for codes mapping */
61
static char lp_group_name[MAX_NAME_LENGTH];
62 63
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

64 65 66 67 68 69
/* router magic number */
int router_magic_num = 0;

/* terminal magic number */
int terminal_magic_num = 0;

70 71 72 73 74 75 76
typedef struct terminal_message_list terminal_message_list;
struct terminal_message_list {
    terminal_message msg;
    char* event_data;
    terminal_message_list *next;
    terminal_message_list *prev;
};
77

78 79 80 81 82 83 84
void init_terminal_message_list(terminal_message_list *this, 
    terminal_message *inmsg) {
    this->msg = *inmsg;
    this->event_data = NULL;
    this->next = NULL;
    this->prev = NULL;
}
85

86 87 88 89
void delete_terminal_message_list(terminal_message_list *this) {
    if(this->event_data != NULL) free(this->event_data);
    free(this);
}
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/
    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
108
    int total_terminals;
109
    int num_global_channels;
110 111 112 113
    double cn_delay;
    double local_delay;
    double global_delay;
    double credit_delay;
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
struct dfly_hash_key
{
    uint64_t message_id;
    tw_lpid sender_id;
};

struct dfly_qhash_entry
{
   struct dfly_hash_key key;
   char * remote_event_data;
   int num_chunks;
   int remote_event_size;
   struct qhash_head hash_link;
};

131 132 133 134 135 136 137 138
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;
typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
139
   uint64_t packet_counter;
140 141

   // Dragonfly specific parameters
142 143
   unsigned int router_id;
   unsigned int terminal_id;
144 145 146

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
147
   int num_vcs;
148 149
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
150 151 152
   terminal_message_list **terminal_msgs;
   terminal_message_list **terminal_msgs_tail;
   int in_send_loop;
153 154 155 156
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
181 182 183

   const char * anno;
   const dragonfly_param *params;
184

185 186
   struct qhash_table *rank_tbl;
   uint64_t rank_tbl_pop;
187
};
188

189 190 191 192 193
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
194
  T_SEND,
195
  T_BUFFER,
196 197
  R_SEND,
  R_ARRIVE,
198 199 200 201
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
225 226
    MINIMAL = 0,
    NON_MINIMAL,
227 228
    ADAPTIVE,
    PROG_ADAPTIVE
229 230 231 232 233 234
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
235 236
  
   int* global_channel; 
237
   
238 239
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
240
   tw_stime* cur_hist_start_time;
241 242 243 244 245
   terminal_message_list ***pending_msgs;
   terminal_message_list ***pending_msgs_tail;
   terminal_message_list ***queued_msgs;
   terminal_message_list ***queued_msgs_tail;
   int *in_send_loop;
246
   
247 248
   int** vc_occupancy;
   int* link_traffic;
249 250 251

   const char * anno;
   const dragonfly_param *params;
252 253 254

   int* prev_hist_num;
   int* cur_hist_num;
255 256 257 258 259 260
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
261
static tw_stime         max_collective = 0;
262 263 264 265 266


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

267 268 269 270 271 272 273 274 275 276 277 278 279 280
static int dragonfly_rank_hash_compare(
        void *key, struct qhash_head *link)
{
    struct dfly_hash_key *message_key = (struct dfly_hash_key *)key;
    struct dfly_qhash_entry *tmp;

    tmp = qhash_entry(link, struct dfly_qhash_entry, hash_link);
    
    if (tmp->key.message_id == message_key->message_id
            && tmp->key.sender_id == message_key->sender_id)
        return 1;

    return 0;
}
281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* convert GiB/s and bytes to ns */
static tw_stime bytes_to_ns(uint64_t bytes, double GB_p_s)
{
    tw_stime time;

    /* bytes to GB */
    time = ((double)bytes)/(1024.0*1024.0*1024.0);
    /* MB to s */
    time = time / GB_p_s;
    /* s to ns */
    time = time * 1000.0 * 1000.0 * 1000.0;

    return(time);
}
295

296 297
/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
298
{
299 300
	   return sizeof(terminal_message);
}
301

302 303 304 305 306 307 308 309 310 311 312 313
static void append_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thisq[index] = msg;
    } else {
        thistail[index]->next = msg;
        msg->prev = thistail[index];
    } 
    thistail[index] = msg;
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328
static void prepend_to_terminal_message_list(  
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message_list *msg) {
    if(thisq[index] == NULL) {
        thistail[index] = msg;
    } else {
        thisq[index]->prev = msg;
        msg->next = thisq[index];
    } 
    thisq[index] = msg;
}
329

330 331 332 333 334 335 336 337 338 339
static void create_prepend_to_terminal_message_list(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index, 
        terminal_message *msg) {
    terminal_message_list* new_entry = (terminal_message_list*)malloc(
        sizeof(terminal_message_list));
    init_terminal_message_list(new_entry, msg);
    if(msg->remote_event_size_bytes) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
340 341 342
        size_t s = msg->remote_event_size_bytes + msg->local_event_size_bytes;
        new_entry->event_data = (void*)malloc(s);
        memcpy(new_entry->event_data, m_data, s);
343
    }
344
    prepend_to_terminal_message_list( thisq, thistail, index, new_entry);
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static terminal_message_list* return_head(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *head = thisq[index];
    if(head != NULL) {
        thisq[index] = head->next;
        if(head->next != NULL) {
            head->next->prev = NULL;
            head->next = NULL;
        } else {
            thistail[index] = NULL;
        }
    }
    return head;
362 363
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377
static terminal_message_list* return_tail(
        terminal_message_list ** thisq,
        terminal_message_list ** thistail,
        int index) {
    terminal_message_list *tail = thistail[index];
    if(tail->prev != NULL) {
        tail->prev->next = NULL;
        thistail[index] = tail->prev;
        tail->prev = NULL;
    } else {
        thistail[index] = NULL;
        thisq[index] = NULL;
    }
    return tail;
378 379
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static void copy_terminal_list_entry( terminal_message_list *cur_entry,
    terminal_message *msg) {
    terminal_message *cur_msg = &cur_entry->msg;
    msg->travel_start_time = cur_msg->travel_start_time;
    msg->packet_ID = cur_msg->packet_ID;    
    strcpy(msg->category, cur_msg->category);
    msg->final_dest_gid = cur_msg->final_dest_gid;
    msg->sender_lp = cur_msg->sender_lp;
    msg->dest_terminal_id = cur_msg->dest_terminal_id;
    msg->src_terminal_id = cur_msg->src_terminal_id;
    msg->local_id = cur_msg->local_id;
    msg->origin_router_id = cur_msg->origin_router_id;
    msg->my_N_hop = cur_msg->my_N_hop;
    msg->my_l_hop = cur_msg->my_l_hop;
    msg->my_g_hop = cur_msg->my_g_hop;
    msg->intm_lp_id = cur_msg->intm_lp_id;
    msg->saved_channel = cur_msg->saved_channel;
    msg->saved_vc = cur_msg->saved_vc;
    msg->last_hop = cur_msg->last_hop;
    msg->path_type = cur_msg->path_type;
    msg->vc_index = cur_msg->vc_index;
    msg->output_chan = cur_msg->output_chan;
    msg->is_pull = cur_msg->is_pull;
    msg->pull_size = cur_msg->pull_size;
    msg->intm_group_id = cur_msg->intm_group_id;
    msg->chunk_id = cur_msg->chunk_id;
406
    msg->total_size = cur_msg->total_size;
407
    msg->packet_size = cur_msg->packet_size;
408
    msg->message_id = cur_msg->message_id;
409 410 411 412 413 414 415 416 417 418 419 420
    msg->local_event_size_bytes = cur_msg->local_event_size_bytes;
    msg->remote_event_size_bytes = cur_msg->remote_event_size_bytes;
    msg->sender_node = cur_msg->sender_node;
    msg->next_stop = cur_msg->next_stop;
    msg->magic = cur_msg->magic;

    if(msg->local_event_size_bytes +  msg->remote_event_size_bytes > 0) {
        void *m_data = model_net_method_get_edata(DRAGONFLY, msg);
        memcpy(m_data, cur_entry->event_data, 
            msg->local_event_size_bytes +  msg->remote_event_size_bytes);
    }
}
421 422 423
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
424

425 426 427 428 429 430 431 432
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

433
    p->num_vcs = 3;
434 435

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
436
    if(!p->local_vc_size) {
437 438 439 440 441
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
442
    if(!p->global_vc_size) {
443 444 445 446 447
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
448
    if(!p->cn_vc_size) {
449 450 451 452 453
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
454
    if(!p->chunk_size) {
455
        p->chunk_size = 512;
456
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
457 458 459
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
460
    if(!p->local_bandwidth) {
461 462 463 464 465
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
466
    if(!p->global_bandwidth) {
467 468 469 470 471
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
472
    if(!p->cn_bandwidth) {
473 474 475 476
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }

477 478
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
479
            MAX_NAME_LENGTH);
480 481
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
482 483
    else if(strcmp(routing_str, "nonminimal")==0 || 
            strcmp(routing_str,"non-minimal")==0)
484 485 486 487 488
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
489 490 491 492
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
493
        routing = -1;
494 495 496 497 498 499
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
500
    p->radix = (p->num_cn + p->num_global_channels + p->num_routers);
501
    p->total_routers = p->num_groups * p->num_routers;
502
    p->total_terminals = p->total_routers * p->num_cn;
503 504 505 506 507 508 509
    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    if(!rank) {
        printf("\n Total nodes %d routers %d groups %d radix %d \n",
                p->num_cn * p->total_routers, p->total_routers, p->num_groups,
                p->radix);
    }
510
    
511 512 513 514
    p->cn_delay = bytes_to_ns(p->chunk_size, p->cn_bandwidth);
    p->local_delay = bytes_to_ns(p->chunk_size, p->local_bandwidth);
    p->global_delay = bytes_to_ns(p->chunk_size, p->global_bandwidth);
    p->credit_delay = bytes_to_ns(8.0, p->local_bandwidth); //assume 8 bytes packet
515 516 517

}

518 519 520 521
static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
522
    all_params = malloc(num_params * sizeof(*all_params));
523 524

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
525
        const char * anno = anno_map->annotations[i].ptr;
526 527 528 529 530
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
531 532 533 534 535 536 537
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
538
   int total_minimal_packets, total_nonmin_packets, total_completed_packets;
539 540 541 542 543

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
544
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
545 546 547
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
548
 	MPI_Reduce(&completed_packets, &total_completed_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
549
    }
550

551 552
   /* print statistics */
   if(!g_tw_mynode)
553
   {	
554
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us avg time %lf \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000, avg_time);
555
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
556
              printf("\n ADAPTIVE ROUTING STATS: %d percent packets routed minimally %d percent packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, total_completed_packets);
557 558
 
  }
559 560
   return;
}
561

562 563 564
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
565 566 567 568 569
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    terminal_magic_num = h1 + h2;
    
    int i;
    char anno[MAX_NAME_LENGTH];

    // Assign the global router ID
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
        s->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

   s->num_vcs = 1;
   s->vc_occupancy = (int*)malloc(s->num_vcs * sizeof(int));

   for( i = 0; i < s->num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
    }

662 663 664 665 666
   s->rank_tbl = qhash_init(dragonfly_rank_hash_compare, quickhash_64bit_hash, DFLY_HASH_TABLE_SIZE);

   if(!s->rank_tbl)
       tw_error(TW_LOC, "\n Hash table not initialized! ");

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
   s->terminal_msgs = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs_tail = 
       (terminal_message_list**)malloc(1*sizeof(terminal_message_list*));
   s->terminal_msgs[0] = NULL;
   s->terminal_msgs_tail[0] = NULL;
   s->in_send_loop = 0;

   dragonfly_collective_init(s, lp);
   return;
}


/* sets up the router virtual channels, global channels, 
 * local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
683
{
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    uint32_t h1 = 0, h2 = 0; 
    bj_hashlittle2(LP_METHOD_NM, strlen(LP_METHOD_NM), &h1, &h2);
    router_magic_num = h1 + h2;
    
    char anno[MAX_NAME_LENGTH];
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);

    if (anno[0] == '\0'){
        r->anno = NULL;
        r->params = &all_params[num_params-1];
    } else{
        r->anno = strdup(anno);
        int id = configuration_get_annotation_index(anno, anno_map);
        r->params = &all_params[id];
    }

    // shorthand
    const dragonfly_param *p = r->params;

   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/p->num_routers;

   r->global_channel = (int*)malloc(p->num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->cur_hist_start_time = (tw_stime*)malloc(p->radix * sizeof(tw_stime));
   r->link_traffic = (int*)malloc(p->radix * sizeof(int));
   r->cur_hist_num = (int*)malloc(p->radix * sizeof(int));
   r->prev_hist_num = (int*)malloc(p->radix * sizeof(int));
   
   r->vc_occupancy = (int**)malloc(p->radix * sizeof(int*));
   r->in_send_loop = (int*)malloc(p->radix * sizeof(int));
   r->pending_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->pending_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
   r->queued_msgs_tail = 
    (terminal_message_list***)malloc(p->radix * sizeof(terminal_message_list**));
  
726
   for(int i=0; i < p->radix; i++)
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
	r->cur_hist_start_time[i] = 0;
        r->link_traffic[i]=0;
	r->cur_hist_num[i] = 0;
	r->prev_hist_num[i] = 0;
        
        r->in_send_loop[i] = 0;
        r->vc_occupancy[i] = (int*)malloc(p->num_vcs * sizeof(int));
        r->pending_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->pending_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
        r->queued_msgs_tail[i] = (terminal_message_list**)malloc(p->num_vcs * 
            sizeof(terminal_message_list*));
746
        for(int j = 0; j < p->num_vcs; j++) {
747 748 749 750 751 752 753 754 755 756 757 758 759 760
            r->vc_occupancy[i][j] = 0;
            r->pending_msgs[i][j] = NULL;
            r->pending_msgs_tail[i][j] = NULL;
            r->queued_msgs[i][j] = NULL;
            r->queued_msgs_tail[i][j] = NULL;
        }
    }

#if DEBUG == 1
   printf("\n LP ID %d VC occupancy radix %d Router %d is connected to ", lp->gid, p->radix, r->router_id);
#endif 
   //round the number of global channels to the nearest even number
#if USE_DIRECT_SCHEME
       int first = r->router_id % p->num_routers;
761
       for(int i=0; i < p->num_global_channels; i++)
762 763 764 765 766 767 768 769 770 771 772 773 774
        {
            int target_grp = first;
            if(target_grp == r->group_id) {
                target_grp = p->num_groups - 1;
            }
            int my_pos = r->group_id % p->num_routers;
            if(r->group_id == p->num_groups - 1) {
                my_pos = target_grp % p->num_routers;
            }
            r->global_channel[i] = target_grp * p->num_routers + my_pos;
            first += p->num_routers;
        }
#else
775 776 777
   int router_offset = (r->router_id % p->num_routers) * 
    (p->num_global_channels / 2) + 1;
   for(int i=0; i < p->num_global_channels; i++)
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    {
      if(i % 2 != 0)
          {
             r->global_channel[i]=(r->router_id + (router_offset * p->num_routers))%p->total_routers;
             router_offset++;
          }
          else
           {
             r->global_channel[i]=r->router_id - ((router_offset) * p->num_routers);
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=p->total_routers+r->global_channel[i]; 
	 }
#if DEBUG == 1
    printf("\n channel %d ", r->global_channel[i]);
#endif 
    }
#endif

#if DEBUG == 1
   printf("\n");
#endif
   return;
}	


/* dragonfly packet event , generates a dragonfly packet on the compute node */
806 807 808 809 810 811 812 813 814 815
static tw_stime dragonfly_packet_event(
        model_net_request const * req,
        uint64_t message_offset,
        uint64_t packet_size,
        tw_stime offset,
        mn_sched_params const * sched_params,
        void const * remote_event,
        void const * self_event,
        tw_lp *sender,
        int is_last_pckt)
816
{
817 818 819 820 821
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

822 823 824 825
    xfer_to_nic_time = codes_local_latency(sender); 
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
826 827
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
828 829
    strcpy(msg->category, req->category);
    msg->final_dest_gid = req->final_dest_lp;
830
    msg->total_size = req->msg_size;
831
    msg->sender_lp=req->src_lp;
832 833 834 835
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
836
    msg->message_id = req->msg_id;
837 838
    msg->is_pull = req->is_pull;
    msg->pull_size = req->pull_size;
839
    msg->magic = terminal_magic_num;
840 841 842

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
843
	if(req->remote_event_size > 0)
844
	 {
845 846 847
		msg->remote_event_size_bytes = req->remote_event_size;
		memcpy(tmp_ptr, remote_event, req->remote_event_size);
		tmp_ptr += req->remote_event_size;
848
	}
849
	if(req->self_event_size > 0)
850
	{
851 852 853
		msg->local_event_size_bytes = req->self_event_size;
		memcpy(tmp_ptr, self_event, req->self_event_size);
		tmp_ptr += req->self_event_size;
854 855
	}
     }
856
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
857
    tw_event_send(e_new);
858
    return xfer_to_nic_time;
859 860 861 862 863 864 865 866 867
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

868 869 870
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
871 872
		    int num_routers,
                    int total_groups)
873
{
874 875 876 877 878 879 880
#if USE_DIRECT_SCHEME
  int dest = dest_gid;
  if(dest == total_groups - 1) {
      dest = src_gid;
  }
  return src_gid * num_routers + (dest % num_routers);
#else
881 882 883
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
884
  
885 886
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
887
  
888 889
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
890
  
891
  offset=(offset - 1) % (half_channel * num_routers);
892 893 894 895 896 897 898 899 900 901

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
902
#endif
903 904 905
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
906 907
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp, int sq) {
908 909 910 911
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

912
  int dest = 0,  type = R_BUFFER;
913
  int is_terminal = 0;
914

915
  const dragonfly_param *p = s->params;
916 917 918 919 920 921 922 923 924 925 926 927 928
 
  // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL) {
    dest = msg->src_terminal_id;
    type = T_BUFFER;
    is_terminal = 1;
  } else if(msg->last_hop == GLOBAL) {
    dest = msg->intm_lp_id;
  } else if(msg->last_hop == LOCAL) {
    dest = msg->intm_lp_id;
  } else
    printf("\n Invalid message type");

929
  ts = g_tw_lookahead + p->credit_delay +  tw_rand_unif(lp->rng);
930
	
931 932 933 934 935 936 937 938 939 940 941 942 943 944
  if (is_terminal) {
    buf_e = model_net_method_event_new(dest, ts, lp, DRAGONFLY, 
      (void**)&buf_msg, NULL);
    buf_msg->magic = terminal_magic_num;
  } else {
    buf_e = tw_event_new(dest, ts , lp);
    buf_msg = tw_event_data(buf_e);
    buf_msg->magic = router_magic_num;
  }
 
  if(sq == -1) {
    buf_msg->vc_index = msg->vc_index;
    buf_msg->output_chan = msg->output_chan;
  } else {
945
    buf_msg->vc_index = msg->saved_vc;
946 947 948 949
    buf_msg->output_chan = msg->saved_channel;
  }
  
  buf_msg->type = type;
950

951 952
  tw_event_send(buf_e);
  return;
953 954
}

955
void packet_generate_rc(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
956
{
957 958 959
   term_rev_ecount++;
   term_ecount--;

960 961
   tw_rand_reverse_unif(lp->rng);

962 963 964
   int num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
965

966
   if(!num_chunks)
967
       num_chunks = 1;
968

969 970 971 972 973 974 975 976 977 978 979
   int i;
   for(i = 0; i < num_chunks; i++) {
        delete_terminal_message_list(return_tail(s->terminal_msgs, 
          s->terminal_msgs_tail, 0));
   }
    if(bf->c5) {
        tw_rand_reverse_unif(lp->rng);
        s->in_send_loop = 0;
    }
     struct mn_stats* stat;
     stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
980 981 982 983
     stat->send_count--;
     stat->send_bytes -= msg->packet_size;
     stat->send_time -= (1/s->params->cn_bandwidth) * msg->packet_size;
}
984

985
/* generates packet at the current dragonfly compute node */
986 987 988
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  term_ecount++;
989

990 991 992 993 994
  tw_stime ts;
  tw_lpid dest_terminal_id;
  dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
      msg->final_dest_gid);
  msg->dest_terminal_id = dest_terminal_id;
995

996
  const dragonfly_param *p = s->params;
997

998
  ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
999
  model_net_method_idle_event(codes_local_latency(lp), 0, lp);
1000

1001 1002 1003
  int i, total_event_size;
  int num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size) num_chunks++;
1004 1005 1006 1007

  if(!num_chunks)
    num_chunks = 1;

1008
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter;
1009 1010 1011 1012 1013
  msg->travel_start_time = tw_now(lp);
  msg->my_N_hop = 0;
  msg->my_l_hop = 0;
  msg->my_g_hop = 0;
  msg->intm_group_id = -1;
1014

1015 1016 1017 1018 1019
  for(i = 0; i < num_chunks; i++)
  {
    terminal_message_list *cur_chunk = (terminal_message_list*)malloc(
      sizeof(terminal_message_list));
    init_terminal_message_list(cur_chunk, msg);
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    if(msg->remote_event_size_bytes + msg->local_event_size_bytes > 0) {
      cur_chunk->event_data = (char*)malloc(
          msg->remote_event_size_bytes + msg->local_event_size_bytes);
    }
    
    void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
    if (msg->remote_event_size_bytes){
      memcpy(cur_chunk->event_data, m_data_src, msg->remote_event_size_bytes);
    }
    if (msg->local_event_size_bytes){ 
      m_data_src = (char*)m_data_src + msg->remote_event_size_bytes;
      memcpy((char*)cur_chunk->event_data + msg->remote_event_size_bytes, 
          m_data_src, msg->local_event_size_bytes);
    }
1035

1036 1037 1038 1039
    cur_chunk->msg.chunk_id = i;
    append_to_terminal_message_list(s->terminal_msgs, s->terminal_msgs_tail,
      0, cur_chunk);
  }
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
  if(s->in_send_loop == 0) {
    bf->c5 = 1;
    terminal_message *m;
    ts = g_tw_lookahead + s->params->cn_delay + tw_rand_unif(lp->rng);
    tw_event* e = model_net_method_event_new(lp->gid, ts, lp, DRAGONFLY, 
      (void**)&m, NULL);
    m->type = T_SEND;
    m->magic = terminal_magic_num;
    s->in_send_loop = 1;
    tw_event_send(e);
  }
1052

1053 1054 1055 1056 1057 1058 1059 1060
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
1061
	  stat->max_event_size = total_event_size;
1062

1063 1064 1065
  return;
}

1066 1067
void packet_send_rc(terminal_state * s, tw_bf * bf, terminal_message * msg,
        tw_lp * lp)
1068
{
1069 1070
      term_ecount--;
      term_rev_ecount++;
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
      if(bf->c1) {
        s->in_send_loop = 1;
        return;
      }
      
      s->terminal_available_time = msg->saved_available_time;
      tw_rand_reverse_unif(lp->rng);
      if(bf->c2) {
        codes_local_latency_reverse(lp);
      }
     
      s->packet_counter--;
      s->vc_occupancy[0] -= s->params->chunk_size;
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
      create_prepend_to_terminal_message_list(s->terminal_msgs,
          s->terminal_msgs_tail, 0, msg);
      if(bf->c3) {
        tw_rand_reverse_unif(lp->rng);
      }
      if(bf->c4) {
        s->in_send_loop = 1;
      }
    return;
}
/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, 
  tw_lp * lp) {
  
  term_ecount++;
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
  terminal_message_list* cur_entry = s->terminal_msgs[0];

  if(s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size 
      || cur_entry == NULL) {
    bf->c1 = 1;
    s->in_send_loop = 0;
    //printf("[%d] Skipping send %d %d\n", lp->gid, cur_entry == NULL, 
    //  (s->vc_occupancy[0] + s->params->chunk_size > s->params->cn_vc_size));
    return;
  }

1117
//  printf("\n Packet %ld sent at time %lf ", cur_entry->msg.packet_ID, tw_now(lp));
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130