codes-darshan-io-wrkld.c 51 KB
Newer Older
1 2 3 4 5
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */
6
#include <assert.h>
7
#include <math.h>
8 9

#include "codes/codes-workload.h"
10
#include "codes/quickhash.h"
11
#include "codes-workload-method.h"
12

13
#include "darshan-logutils.h"
14

15 16 17
#define DEF_INTER_IO_DELAY_PCT 0.2
#define DEF_INTER_CYC_DELAY_PCT 0.4

18 19 20 21
#define DARSHAN_NEGLIGIBLE_DELAY .001

#define RANK_HASH_TABLE_SIZE 397

22 23 24 25 26
#define IO_IS_IN_SIZE_BIN_RANGE(size, bin_ndx, bin_min_sizes)                       \
        ((bin_ndx == 9) ?                                                           \
        (size >= bin_min_sizes[bin_ndx]) :                                          \
        ((size >= bin_min_sizes[bin_ndx]) && (size < bin_min_sizes[bin_ndx + 1])))

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* structure for storing a darshan workload operation (a codes op with 2 timestamps) */
struct darshan_io_op
{
    struct codes_workload_op codes_op;
    double start_time;
    double end_time;
};

/* I/O context structure managed by each rank in the darshan workload */
struct rank_io_context
{
    int64_t my_rank;
    double last_op_time;
    void *io_op_dat;
    struct qhash_head hash_link;
};

/* Darshan workload generator's implementation of the CODES workload API */
45 46
static int darshan_io_workload_load(const char *params, int rank);
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static int darshan_rank_hash_compare(void *key, struct qhash_head *link);

/* Darshan I/O op data structure access (insert, remove) abstraction */
static void *darshan_init_io_op_dat(void);
static void darshan_insert_next_io_op(void *io_op_dat, struct darshan_io_op *io_op);
static void darshan_remove_next_io_op(void *io_op_dat, struct darshan_io_op *io_op,
                                      double last_op_time);
static void darshan_finalize_io_op_dat(void *io_op_dat);
static int darshan_io_op_compare(const void *p1, const void *p2);

/* Helper functions for implementing the (complex, nonfactored) Darshan workload generator */
static void generate_psx_ind_file_events(struct darshan_file *file,
                                         struct rank_io_context *io_context);
static void generate_psx_coll_file_events(struct darshan_file *file,
                                          struct rank_io_context *io_context,
                                          int64_t nprocs, int64_t aggregator_cnt);
63
static double generate_psx_open_event(struct darshan_file *file, int create_flag,
64 65
                                      double meta_op_time, double cur_time,
                                      struct rank_io_context *io_context);
66
static double generate_psx_close_event(struct darshan_file *file, double meta_op_time,
67 68 69
                                       double cur_time, struct rank_io_context *io_context);
static double generate_barrier_event(struct darshan_file *file, int64_t root, double cur_time,
                                     struct rank_io_context *io_context);
70 71
static double generate_psx_ind_io_events(struct darshan_file *file, int64_t io_ops_this_cycle,
                                         int64_t open_ndx, double inter_io_delay, 
72 73 74 75 76 77 78
                                         double meta_op_time, double cur_time,
                                         struct rank_io_context *io_context);
static double generate_psx_coll_io_events(struct darshan_file *file, int64_t ind_io_ops_this_cycle,
                                          int64_t coll_io_ops_this_cycle, int64_t nprocs,
                                          int64_t aggregator_cnt, int64_t open_ndx,
                                          double inter_io_delay, double meta_op_time, double cur_time,
                                          struct rank_io_context *io_context);
79 80 81 82 83 84 85
static void determine_io_params(struct darshan_file *file, int write_flag, int coll_flag,
                                int64_t io_cycles, size_t *io_sz, off_t *io_off);
static void calc_io_delays(struct darshan_file *file, int64_t num_opens, int64_t num_io_ops,
                           double delay_per_cycle, double *first_io_delay, double *close_delay,
                           double *inter_open_delay, double *inter_io_delay);
static void file_sanity_check(struct darshan_file *file, struct darshan_job *job);

86 87 88 89 90 91 92 93
/* workload method name and function pointers for the CODES workload API */
struct codes_workload_method darshan_io_workload_method =
{
    .method_name = "darshan_io_workload",
    .codes_workload_load = darshan_io_workload_load,
    .codes_workload_get_next = darshan_io_workload_get_next,
};

94
/* hash table to store per-rank workload contexts */
95
static struct qhash_table *rank_tbl = NULL;
96
static int rank_tbl_pop = 0;
97

98 99 100
/* load the workload generator for this rank, given input params */
static int darshan_io_workload_load(const char *params, int rank)
{
101 102
    darshan_params *d_params = (darshan_params *)params;
    darshan_fd logfile_fd;
103 104
    struct darshan_job job;
    struct darshan_file next_file;
105
    struct rank_io_context *my_ctx;
106
    int ret;
107

108
    if (!d_params)
109 110
        return -1;

111
    /* open the darshan log to begin reading in file i/o info */
112 113
    logfile_fd = darshan_log_open(d_params->log_file_path, "r");
    if (logfile_fd < 0)
114
        return -1;
115

116 117 118 119 120 121 122 123
    /* get the per-job stats from the log */
    ret = darshan_log_getjob(logfile_fd, &job);
    if (ret < 0)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }

124 125 126 127 128 129 130 131 132 133 134
    /* allocate the i/o context needed by this rank */
    my_ctx = malloc(sizeof(struct rank_io_context));
    if (!my_ctx)
    {
        darshan_log_close(logfile_fd);
        return -1;
    }
    my_ctx->my_rank = (int64_t)rank;
    my_ctx->last_op_time = 0.0;
    my_ctx->io_op_dat = darshan_init_io_op_dat();

135 136 137 138 139 140 141 142 143 144
    /* loop over all files contained in the log file */
    while ((ret = darshan_log_getfile(logfile_fd, &job, &next_file)) > 0)
    {
        /* generate all i/o events contained in this independent file */
        if (next_file.rank == rank)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);

            /* generate i/o events and store them in this rank's workload context */
145
            generate_psx_ind_file_events(&next_file, my_ctx);
146 147 148 149 150 151
        }
        /* generate all i/o events involving this rank in this collective file */
        else if (next_file.rank == -1)
        {
            /* make sure the file i/o counters are valid */
            file_sanity_check(&next_file, &job);
152 153 154

            /* generate collective i/o events and store them in the rank context */
            generate_psx_coll_file_events(&next_file, my_ctx, job.nprocs, d_params->aggregator_cnt);
155 156 157 158 159
        }
    }
    if (ret < 0)
        return -1;

160
    darshan_log_close(logfile_fd);
161

162 163 164 165 166 167 168 169 170 171 172 173 174
    /* finalize the rank's i/o context so i/o ops may be retrieved later (in order) */
    darshan_finalize_io_op_dat(my_ctx->io_op_dat);

    /* initialize the hash table of rank contexts, if it has not been initialized */
    if (!rank_tbl)
    {
        rank_tbl = qhash_init(darshan_rank_hash_compare, quickhash_64bit_hash, RANK_HASH_TABLE_SIZE);
        if (!rank_tbl)
            return -1;
    }

    /* add this rank context to the hash table */
    qhash_add(rank_tbl, &(my_ctx->my_rank), &(my_ctx->hash_link));
175
    rank_tbl_pop++;
176

177 178 179 180 181 182
    return 0;
}

/* pull the next event (independent or collective) for this rank from its event context */
static void darshan_io_workload_get_next(int rank, struct codes_workload_op *op)
{
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    int64_t my_rank = (int64_t)rank;
    struct qhash_head *hash_link = NULL;
    struct rank_io_context *tmp = NULL;
    struct darshan_io_op next_io_op;

    /* find i/o context for this rank in the rank hash table */
    hash_link = qhash_search(rank_tbl, &my_rank);

    /* terminate the workload if there is no valid rank context */
    if (!hash_link)
    {
        op->op_type = CODES_WK_END;
        return;
    }

    /* get access to the rank's io_context data */
    tmp = qhash_entry(hash_link, struct rank_io_context, hash_link);
    assert(tmp->my_rank == my_rank);

    /* get the next darshan i/o op out of this rank's context */
    darshan_remove_next_io_op(tmp->io_op_dat, &next_io_op, tmp->last_op_time);

    /* free the rank's i/o context if this is the last i/o op */
    if (next_io_op.codes_op.op_type == CODES_WK_END)
    {
        qhash_del(hash_link);
        free(tmp);
210 211 212 213
 
        rank_tbl_pop--;
        if (!rank_tbl_pop)
            qhash_finalize(rank_tbl);
214 215 216 217 218 219 220 221 222
    }
    else
    {
        /* else, set the last op time to be the end of the returned op */
        tmp->last_op_time = next_io_op.end_time;
    }

    /* return the codes op contained in the darshan i/o op */
    *op = next_io_op.codes_op;
223 224 225 226

    return;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/* comparison function for comparing two hash keys (used for storing multiple io contexts) */
static int darshan_rank_hash_compare(
    void *key, struct qhash_head *link)
{
    int64_t *in_rank = (int64_t *)key;
    struct rank_io_context *tmp;

    tmp = qhash_entry(link, struct rank_io_context, hash_link);
    if (tmp->my_rank == *in_rank)
        return 1;

    return 0;
}

/*****************************************/
/*                                       */
/*   Darshan I/O op storage abstraction  */
/*                                       */
/*****************************************/

#define DARSHAN_IO_OP_INC_CNT 100000

/* dynamically allocated array data structure for storing darshan i/o events */
struct darshan_io_dat_array
{
    struct darshan_io_op *op_array;
    int64_t op_arr_ndx;
    int64_t op_arr_cnt;
};

/* initialize the dynamic array data structure */
static void *darshan_init_io_op_dat()
{
    struct darshan_io_dat_array *tmp;

    /* initialize the array data structure */
    tmp = malloc(sizeof(struct darshan_io_dat_array));
    assert(tmp);
    tmp->op_array = malloc(DARSHAN_IO_OP_INC_CNT * sizeof(struct darshan_io_op));
    assert(tmp->op_array);
    tmp->op_arr_ndx = 0;
    tmp->op_arr_cnt = DARSHAN_IO_OP_INC_CNT;

    /* return the array info for this rank's i/o context */
    return (void *)tmp;
}

/* store the i/o event in this rank's i/o context */
static void darshan_insert_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;
    struct darshan_io_op *tmp;

    /* realloc array if it is already full */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        tmp = malloc((array->op_arr_cnt + DARSHAN_IO_OP_INC_CNT) * sizeof(struct darshan_io_op));
        assert(tmp);
        memcpy(tmp, array->op_array, array->op_arr_cnt * sizeof(struct darshan_io_op));
        free(array->op_array);
        array->op_array = tmp;
        array->op_arr_cnt += DARSHAN_IO_OP_INC_CNT;
    }

    /* add the darshan i/o op to the array */
    array->op_array[array->op_arr_ndx++] = *io_op;

    return;
}

/* pull the next i/o event out of this rank's i/o context */
static void darshan_remove_next_io_op(
    void *io_op_dat, struct darshan_io_op *io_op, double last_op_time)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* if the array has been scanned completely already */
    if (array->op_arr_ndx == array->op_arr_cnt)
    {
        /* no more events just end the workload */
        io_op->codes_op.op_type = CODES_WK_END;

        /* free data structures */
        free(array->op_array);
        free(array);
    }
    else
    {
        struct darshan_io_op *tmp = &(array->op_array[array->op_arr_ndx]);

        if ((tmp->start_time - last_op_time) < DARSHAN_NEGLIGIBLE_DELAY)
        {
            /* there is no delay, just return the next op in the array */
            *io_op = *tmp;
            array->op_arr_ndx++;
        }
        else
        {
            /* there is a nonnegligible delay, so generate and return a delay event */
            io_op->codes_op.op_type = CODES_WK_DELAY;
            io_op->codes_op.u.delay.seconds = tmp->start_time - last_op_time;
            io_op->start_time = last_op_time;
            io_op->end_time = tmp->start_time;
        }
    }
}

/* sort the dynamic array in order of i/o op start time */
static void darshan_finalize_io_op_dat(
    void *io_op_dat)
{
    struct darshan_io_dat_array *array = (struct darshan_io_dat_array *)io_op_dat;

    /* sort this rank's i/o op list */
    qsort(array->op_array, array->op_arr_ndx, sizeof(struct darshan_io_op), darshan_io_op_compare);
    array->op_arr_cnt = array->op_arr_ndx;
    array->op_arr_ndx = 0;

    return;
}

/* comparison function for sorting darshan_io_ops in order of start timestamps */
static int darshan_io_op_compare(
    const void *p1, const void *p2)
{
    struct darshan_io_op *a = (struct darshan_io_op *)p1;
    struct darshan_io_op *b = (struct darshan_io_op *)p2;

    if (a->start_time < b->start_time)
        return -1;
    else if (a->start_time > b->start_time)
        return 1;
    else
        return 0;
}

/*****************************************/
/*                                       */
/* Darshan workload generation functions */
/*                                       */
/*****************************************/
369 370 371

/* generate events for an independently opened file, and store these events */
static void generate_psx_ind_file_events(
372
    struct darshan_file *file, struct rank_io_context *io_context)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
{
    int64_t io_ops_this_cycle;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
    double delay_per_open;
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_open_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
    int create_flag;
    int64_t i;

    /* if the file was never really opened, just return because we have no timing info */
    if (file->counters[CP_POSIX_OPENS] == 0)
        return;

    /* determine delay available per open-io-close cycle */
    delay_per_open = (file->fcounters[CP_F_CLOSE_TIMESTAMP] - file->fcounters[CP_F_OPEN_TIMESTAMP] -
                     file->fcounters[CP_F_POSIX_READ_TIME] - file->fcounters[CP_F_POSIX_WRITE_TIME] -
                     file->fcounters[CP_F_POSIX_META_TIME]) / file->counters[CP_POSIX_OPENS];

    /* calculate synthetic delay values */
    calc_io_delays(file, file->counters[CP_POSIX_OPENS],
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES],
                   delay_per_open, &first_io_delay, &close_delay,
                   &inter_open_delay, &inter_io_delay);

    /* calculate average meta op time (for i/o and opens/closes) */
    /* TODO: this needs to be updated when we add in stat, seek, etc. */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

405 406 407 408 409
    /* set the create flag if the file was written to */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
410 411 412 413 414 415

    /* generate open/io/close events for all cycles */
    /* TODO: add stats */
    for (i = 0; file->counters[CP_POSIX_OPENS]; i++, file->counters[CP_POSIX_OPENS]--)
    {
        /* generate an open event */
416
        cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time, io_context);
417 418 419 420 421 422 423 424 425 426 427
        create_flag = 0;

        /* account for potential delay from first open to first io */
        cur_time += first_io_delay;

        io_ops_this_cycle = ceil((double)(file->counters[CP_POSIX_READS] +
                                 file->counters[CP_POSIX_WRITES]) /
                                 file->counters[CP_POSIX_OPENS]);

        /* perform the calculated number of i/o operations for this file open */
        cur_time = generate_psx_ind_io_events(file, io_ops_this_cycle, i, inter_io_delay,
428
                                              meta_op_time, cur_time, io_context);
429 430 431 432 433

        /* account for potential delay from last io to close */
        cur_time += close_delay;

        /* generate a close for the open event at the start of the loop */
434
        cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);
435 436 437 438 439 440 441

        /* account for potential interopen delay if more than one open */
        if (file->counters[CP_POSIX_OPENS] > 1)
        {
            cur_time += inter_open_delay;
        }
    }
442 443 444 445 446 447 448 449 450

    return;
}

/* generate events for the i/o ops stored in a collectively opened file for this rank */
void generate_psx_coll_file_events(
    struct darshan_file *file, struct rank_io_context *io_context,
    int64_t nprocs, int64_t in_agg_cnt)
{
451 452 453 454 455
    int64_t open_cycles;
    int64_t total_ind_opens;
    int64_t total_coll_opens;
    int64_t ind_opens_this_cycle;
    int64_t coll_opens_this_cycle;
456 457
    int64_t extra_opens = 0;
    int64_t extra_io_ops = 0;
458
    int64_t total_io_ops = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
459 460 461 462 463 464 465 466 467 468 469 470 471
    int64_t total_ind_io_ops;
    int64_t total_coll_io_ops;
    int64_t ind_io_ops_this_cycle;
    int64_t coll_io_ops_this_cycle;
    int64_t aggregator_cnt;
    int create_flag = 0;
    double cur_time = file->fcounters[CP_F_OPEN_TIMESTAMP];
    double delay_per_cycle;
    double first_io_delay = 0.0;
    double close_delay = 0.0;
    double inter_cycle_delay = 0.0;
    double inter_io_delay = 0.0;
    double meta_op_time;
472
    int64_t i;
473 474 475 476 477 478 479 480 481 482

    /* the collective file was never opened (i.e., just stat-ed), so return */
    if (!(file->counters[CP_POSIX_OPENS]))
        return;

    /*  in this case, posix opens are less than mpi opens...
     *  this is probably a mpi deferred open -- assume app will not use this, currently.
     */
    assert(file->counters[CP_POSIX_OPENS] >= nprocs);

483 484
    if (file->counters[CP_COLL_OPENS] || file->counters[CP_INDEP_OPENS])
    {
485 486
        extra_opens = file->counters[CP_POSIX_OPENS] - file->counters[CP_COLL_OPENS] -
                      file->counters[CP_INDEP_OPENS];
487

488 489 490 491 492 493
        total_coll_opens = file->counters[CP_COLL_OPENS];
        total_ind_opens = file->counters[CP_POSIX_OPENS] - total_coll_opens - extra_opens;
        if (total_coll_opens)
            open_cycles = total_coll_opens / nprocs;
        else
            open_cycles = ceil((double)total_ind_opens / nprocs);
494 495 496 497 498 499 500 501 502 503 504 505 506 507
    }
    else
    {
        extra_opens = file->counters[CP_POSIX_OPENS] % nprocs;
        if (extra_opens && ((file->counters[CP_POSIX_OPENS] / nprocs) % extra_opens))
        {
            extra_opens = 0;
        }
        else
        {
            extra_io_ops = total_io_ops % nprocs;
        }

        total_coll_opens = 0;
508 509
        total_ind_opens = file->counters[CP_POSIX_OPENS] - extra_opens;
        open_cycles = ceil((double)total_ind_opens / nprocs);
510 511 512
    }
    assert(extra_opens <= open_cycles);

513 514 515 516 517
    /* determine delay information */
    delay_per_cycle = (file->fcounters[CP_F_CLOSE_TIMESTAMP] -
                      file->fcounters[CP_F_OPEN_TIMESTAMP] -
                      (file->fcounters[CP_F_POSIX_READ_TIME] / nprocs) -
                      (file->fcounters[CP_F_POSIX_WRITE_TIME] / nprocs) -
518
                      (file->fcounters[CP_F_POSIX_META_TIME] / nprocs)) / open_cycles;
519 520 521 522 523

    /* calculate average meta op time (for i/o and opens/closes) */
    meta_op_time = file->fcounters[CP_F_POSIX_META_TIME] / ((2 * file->counters[CP_POSIX_OPENS]) +
                   file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]);

524 525 526 527 528
    /* it is rare to overwrite existing files, so set the create flag */
    if (file->counters[CP_BYTES_WRITTEN])
    {
        create_flag = 1;
    }
529

530 531
    /* generate all events for this collectively opened file */
    for (i = 0; i < open_cycles; i++)
532
    {
533
        /* TODO: AGG COUNT */
534

535 536 537 538
        ind_opens_this_cycle = ceil((double)total_ind_opens / (open_cycles - i));
        coll_opens_this_cycle = total_coll_opens / (open_cycles - i);
        total_ind_opens -= ind_opens_this_cycle;
        total_coll_opens -= coll_opens_this_cycle;
539

540 541 542
        /* assign any extra opens to rank 0 (these may correspond to file creations or
         * header reads/writes)
         */
543
        if (extra_opens && !(i % (open_cycles / extra_opens)))
544
        {
545 546 547 548 549
            file->rank = 0;

            cur_time = generate_psx_open_event(file, create_flag, meta_op_time, cur_time, io_context);
            create_flag = 0;

550 551
            /* TODO: any extra i/o here -- no delays */

552 553 554 555 556 557 558 559 560 561 562 563
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            file->rank = -1;
            file->counters[CP_POSIX_OPENS]--;
        }

        while (ind_opens_this_cycle > io_context->my_rank)
        {
            cur_time = generate_psx_open_event(file, create_flag, meta_op_time,
                                               cur_time, io_context);
            create_flag = 0;

564 565
            /* TODO do delays, set i/o op counts, do i/o, update i/o op counts */

566 567 568
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            if (ind_opens_this_cycle >= nprocs)
569
            {
570 571
                file->counters[CP_POSIX_OPENS] -= nprocs;
                ind_opens_this_cycle -= nprocs;
572 573 574
            }
            else
            {
575 576
                file->counters[CP_POSIX_OPENS] -= ind_opens_this_cycle;
                ind_opens_this_cycle = 0;
577 578 579
            }
        }

580
        while (coll_opens_this_cycle)
581
        {
582
            assert(!create_flag);
583

584
            cur_time = generate_barrier_event(file, 0, cur_time, io_context);
585 586 587 588

            cur_time = generate_psx_open_event(file, create_flag, meta_op_time,
                                               cur_time, io_context);

589 590
            /* TODO: do delays, set i/o counts, do i/o, update i/o counts */

591 592 593
            cur_time = generate_psx_close_event(file, meta_op_time, cur_time, io_context);

            file->counters[CP_POSIX_OPENS] -= nprocs;
594 595
            file->counters[CP_COLL_OPENS] -= nprocs;
            coll_opens_this_cycle -= nprocs;
596 597
        }
    }
598 599 600 601 602 603

    return;
}

/* fill in an open event structure and store it with the rank context */
static double generate_psx_open_event(
604 605
    struct darshan_file *file, int create_flag, double meta_op_time,
    double cur_time, struct rank_io_context *io_context)
606
{
607 608 609 610 611 612 613
    struct darshan_io_op next_io_op = 
    {
        .codes_op.op_type = CODES_WK_OPEN,
        .codes_op.u.open.file_id = file->hash,
        .codes_op.u.open.create_flag = create_flag,
        .start_time = cur_time
    };
614 615 616

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
617
    next_io_op.end_time = cur_time;
618

619 620 621
    /* store the open event (if this rank performed it) */
    if ((file->rank == io_context->my_rank) || (file->rank == -1))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
622 623 624 625 626 627

    return cur_time;
}

/* fill in a close event structure and store it with the rank context */
static double generate_psx_close_event(
628 629
    struct darshan_file *file, double meta_op_time, double cur_time,
    struct rank_io_context *io_context)
630
{
631 632 633 634 635 636
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_CLOSE,
        .codes_op.u.close.file_id = file->hash,
        .start_time = cur_time
    };
637 638 639

    /* set the end time of the event based on time spent in POSIX meta operations */
    cur_time += meta_op_time;
640
    next_io_op.end_time = cur_time;
641

642 643 644
    /* store the close event (if this rank performed it) */
    if ((file->rank == io_context->my_rank) || (file->rank == -1))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
645 646 647 648 649 650

    return cur_time;
}

/* fill in a barrier event structure and store it with the rank context */
static double generate_barrier_event(
651
    struct darshan_file *file, int64_t root, double cur_time, struct rank_io_context *io_context)
652
{
653 654 655 656 657 658 659
    struct darshan_io_op next_io_op =
    {
        .codes_op.op_type = CODES_WK_BARRIER, 
        .codes_op.u.barrier.count = -1, /* all processes */
        .codes_op.u.barrier.root = root,
        .start_time = cur_time
    };
660 661

    cur_time += .000001; /* small synthetic delay representing time to barrier */
662
    next_io_op.end_time = cur_time;
663

664 665 666
    /* store the barrier event */
    if ((file->rank == -1) || (file->rank == io_context->my_rank))
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
667 668 669 670 671 672 673

    return cur_time;
}

/* generate all i/o events for one independent file open and store them with the rank context */
static double generate_psx_ind_io_events(
    struct darshan_file *file, int64_t io_ops_this_cycle, int64_t open_ndx,
674
    double inter_io_delay, double meta_op_time, double cur_time, struct rank_io_context *io_context)
675 676 677 678 679 680 681 682 683
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    double io_op_time;
    size_t io_sz;
    off_t io_off;
    int64_t i;
684
    struct darshan_io_op next_io_op;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

    /* if there are no i/o ops, just return immediately */
    if (!io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

        /* determine how many io ops to do before next rw switch */
        if (!rw)
            io_ops_this_rw = file->counters[CP_POSIX_READS] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        else
            io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                             ((file->counters[CP_RW_SWITCHES] / 2) + 1);

        /* initialize the rd and wr bandwidth values using total io size and time */
        if (file->fcounters[CP_F_POSIX_READ_TIME])
            rd_bw = file->counters[CP_BYTES_READ] / file->fcounters[CP_F_POSIX_READ_TIME];
        if (file->fcounters[CP_F_POSIX_WRITE_TIME])
            wr_bw = file->counters[CP_BYTES_WRITTEN] / file->fcounters[CP_F_POSIX_WRITE_TIME];
    }

    /* loop to generate all reads/writes for this open/close sequence */
    for (i = 0; i < io_ops_this_cycle; i++)
    {
        /* calculate what value to use for i/o size and offset */
        determine_io_params(file, rw, 0, file->counters[CP_POSIX_OPENS], &io_sz, &io_off);
        if (!rw)
        {
            /* generate a read event */
725 726 727 728 729
            next_io_op.codes_op.op_type = CODES_WK_READ;
            next_io_op.codes_op.u.read.file_id = file->hash;
            next_io_op.codes_op.u.read.size = io_sz;
            next_io_op.codes_op.u.read.offset = io_off;
            next_io_op.start_time = cur_time;
730 731 732 733 734

            /* set the end time based on observed bandwidth and io size */
            if (rd_bw == 0.0)
                io_op_time = 0.0;
            else
735
                io_op_time = (io_sz / rd_bw);
736 737 738

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
739
            next_io_op.end_time = cur_time;
740 741 742 743 744
            file->counters[CP_POSIX_READS]--;
        }
        else
        {
            /* generate a write event */
745 746 747 748 749
            next_io_op.codes_op.op_type = CODES_WK_WRITE;
            next_io_op.codes_op.u.write.file_id = file->hash;
            next_io_op.codes_op.u.write.size = io_sz;
            next_io_op.codes_op.u.write.offset = io_off;
            next_io_op.start_time = cur_time;
750 751 752 753 754

            /* set the end time based on observed bandwidth and io size */
            if (wr_bw == 0.0)
                io_op_time = 0.0;
            else
755
                io_op_time = (io_sz / wr_bw);
756 757 758

            /* update time, accounting for metadata time */
            cur_time += (io_op_time + meta_op_time);
759
            next_io_op.end_time = cur_time;
760 761 762 763 764 765 766
            file->counters[CP_POSIX_WRITES]--;
        }
        psx_rw_ops_remaining--;
        io_ops_this_rw--;
        assert(file->counters[CP_POSIX_READS] >= 0);
        assert(file->counters[CP_POSIX_WRITES] >= 0);

767 768
        /* store the i/o event */
        darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

        /* determine whether to toggle between reads and writes */
        if (!io_ops_this_rw && psx_rw_ops_remaining)
        {
            /* toggle the read/write flag */
            rw ^= 1;
            file->counters[CP_RW_SWITCHES]--;

            /* determine how many io ops to do before next rw switch */
            if (!rw)
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                 ((file->counters[CP_RW_SWITCHES] / 2) + 1);
        }

        if (i != (io_ops_this_cycle - 1))
        {
            /* update current time to account for possible delay between i/o operations */
789
            cur_time += inter_io_delay;
790 791 792 793 794 795 796 797 798 799 800 801
        }
    }

    /* reset the static rw flag if this is the last open-close cycle for this file */
    if (file->counters[CP_POSIX_OPENS] == 1)
    {
        rw = -1;
    }

    return cur_time;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static double generate_psx_coll_io_events(
    struct darshan_file *file, int64_t ind_io_ops_this_cycle, int64_t coll_io_ops_this_cycle,
    int64_t nprocs, int64_t aggregator_cnt, int64_t open_ndx, double inter_io_delay,
    double meta_op_time, double cur_time, struct rank_io_context *io_context)
{
    static int rw = -1; /* rw = 1 for write, 0 for read, -1 for uninitialized */
    static int64_t io_ops_this_rw;
    static double rd_bw = 0.0, wr_bw = 0.0;
    int64_t psx_rw_ops_remaining = file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES];
    int64_t total_io_ops_this_cycle = ind_io_ops_this_cycle + coll_io_ops_this_cycle;
    int64_t total_coll_io_ops =
            (file->counters[CP_COLL_READS] + file->counters[CP_COLL_WRITES]) / nprocs;
    int64_t tmp_rank;
    int64_t next_ind_io_rank = 0;
    int64_t io_cnt;
    int64_t ranks_per_aggregator = nprocs / aggregator_cnt;
818
    int64_t ind_ops_remaining = 0;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
    double io_op_time;
    double max_cur_time = 0.0;
    int ind_coll;
    size_t io_sz;
    off_t io_off;
    int64_t i, j;
    struct darshan_io_op next_io_op;

    if (!total_io_ops_this_cycle)
        return cur_time;

    /* initialze static variables when a new file is opened */
    if (rw == -1)
    {
        /* initialize rw to be the first i/o operation found in the log */
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] == 0.0)
            rw = 0;
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] == 0.0)
            rw = 1;
        else
            rw = (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                  file->fcounters[CP_F_WRITE_START_TIMESTAMP]) ? 0 : 1;

        /* determine how many io ops to do before next rw switch */
        if (!rw)
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_READS] / nprocs) + file->counters[CP_INDEP_READS]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                 ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
        }
        else
        {
            if (file->counters[CP_COLL_OPENS])
                io_ops_this_rw =
                    ((file->counters[CP_COLL_WRITES] / nprocs) + file->counters[CP_INDEP_WRITES]) /
                    ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            else
                io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                 ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
        }

        /* initialize the rd and wr bandwidth values using total io size and time */
        if (file->fcounters[CP_F_POSIX_READ_TIME])
            rd_bw = file->counters[CP_BYTES_READ] / file->fcounters[CP_F_POSIX_READ_TIME];
        if (file->fcounters[CP_F_POSIX_WRITE_TIME])
            wr_bw = file->counters[CP_BYTES_WRITTEN] / file->fcounters[CP_F_POSIX_WRITE_TIME];
    }

871 872 873 874 875
    if (coll_io_ops_this_cycle)
        ind_ops_remaining = ceil((double)ind_io_ops_this_cycle / coll_io_ops_this_cycle);
    else
        ind_ops_remaining = ind_io_ops_this_cycle;

876 877
    for (i = 0; i < total_io_ops_this_cycle; i++)
    {
878 879 880 881 882 883 884 885 886 887
        if (ind_ops_remaining)
        {
            ind_coll = 0;
        }
        else
        {
            ind_coll = 1;
        }

#if 0
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        if (((double)rand() / (double)(RAND_MAX + 1.0)) < ind_coll_switch)
        {
            ind_coll = 0;
            tmp_rank = (next_ind_io_rank++) % nprocs;
            io_cnt = 1;
            if (!rw)
                file->counters[CP_INDEP_READS]--;
            else
                file->counters[CP_INDEP_WRITES]--;
            ind_io_ops_this_cycle--;
        }
        else
        {
            ind_coll = 1;
            cur_time = generate_barrier_event(file, 0, cur_time, io_context);
            tmp_rank = 0;
            if (!rw)
            {
                io_cnt = ceil((double)(file->counters[CP_POSIX_READS] -
                              file->counters[CP_INDEP_READS]) /
                              (file->counters[CP_COLL_READS] / nprocs));
                file->counters[CP_COLL_READS] -= nprocs;
            }
            else
            {
                io_cnt = ceil((double)(file->counters[CP_POSIX_WRITES] -
                              file->counters[CP_INDEP_WRITES]) /
                              (file->counters[CP_COLL_WRITES] / nprocs));
                file->counters[CP_COLL_WRITES] -= nprocs;
            }
            coll_io_ops_this_cycle--;
        }

        for (j = 0; j < io_cnt; j++)
        {
            determine_io_params(file, rw, ind_coll, (ind_coll) ? total_coll_io_ops :
                                file->counters[CP_POSIX_OPENS] / nprocs, &io_sz, &io_off);
            if (!rw)
            {
                /* generate a read event */
                next_io_op.codes_op.op_type = CODES_WK_READ;
                next_io_op.codes_op.u.read.file_id = file->hash;
                next_io_op.codes_op.u.read.size = io_sz;
                next_io_op.codes_op.u.read.offset = io_off;
                next_io_op.start_time = cur_time;

                /* set the end time based on observed bandwidth and io size */
                if (rd_bw == 0.0)
                    io_op_time = 0.0;
                else
                    io_op_time = (io_sz / rd_bw);
                
                next_io_op.end_time = cur_time + io_op_time + meta_op_time;
                file->counters[CP_POSIX_READS]--;
            }
            else
            {
                /* generate a write event */
                next_io_op.codes_op.op_type = CODES_WK_WRITE;
                next_io_op.codes_op.u.write.file_id = file->hash;
                next_io_op.codes_op.u.write.size = io_sz;
                next_io_op.codes_op.u.write.offset = io_off;
                next_io_op.start_time = cur_time;

                /* set the end time based on observed bandwidth and io size */
                if (wr_bw == 0.0)
                    io_op_time = 0.0;
                else
                    io_op_time = (io_sz / wr_bw);

                next_io_op.end_time = cur_time + io_op_time + meta_op_time;
                file->counters[CP_POSIX_WRITES]--;
            }
            psx_rw_ops_remaining--;
            assert(file->counters[CP_POSIX_READS] >= 0);
            assert(file->counters[CP_POSIX_WRITES] >= 0);

            /*  store the i/o event */
            if (tmp_rank == io_context->my_rank)
                darshan_insert_next_io_op(io_context->io_op_dat, &next_io_op);

            if (next_io_op.end_time > max_cur_time)
                max_cur_time = next_io_op.end_time;

            tmp_rank += ranks_per_aggregator;
            if (tmp_rank >= (ranks_per_aggregator * aggregator_cnt))
            {
                tmp_rank = 0;
                cur_time = max_cur_time;
                max_cur_time = 0.0;
            }
        }
        io_ops_this_rw--;

        /* determine whether to toggle between reads and writes */
        if (!io_ops_this_rw && psx_rw_ops_remaining)
        {
            /* toggle the read/write flag */
            rw ^= 1;
            file->counters[CP_RW_SWITCHES] -= aggregator_cnt;

            /* determine how many io ops to do before next rw switch */
            if (!rw)
            {
                if (file->counters[CP_COLL_OPENS])
                    io_ops_this_rw =
                        ((file->counters[CP_COLL_READS] / nprocs) +
                        file->counters[CP_INDEP_READS]) / ((file->counters[CP_RW_SWITCHES] /
                        (2 * aggregator_cnt)) + 1);
                else
                    io_ops_this_rw = file->counters[CP_POSIX_READS] /
                                     ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            }
            else
            {
                if (file->counters[CP_COLL_OPENS])
                    io_ops_this_rw =
                        ((file->counters[CP_COLL_WRITES] / nprocs) +
                        file->counters[CP_INDEP_WRITES]) / ((file->counters[CP_RW_SWITCHES] /
                        (2 * aggregator_cnt)) + 1);
                else
                    io_ops_this_rw = file->counters[CP_POSIX_WRITES] /
                                     ((file->counters[CP_RW_SWITCHES] / (2 * aggregator_cnt)) + 1);
            }
        }

1014
#endif
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    }

    /* reset the static rw flag if this is the last open-close cycle for this file */
    if (file->counters[CP_POSIX_OPENS] <= nprocs)
    {
        rw = -1;
    }

    if (max_cur_time > cur_time)
        return max_cur_time;
    else
        return cur_time;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static void determine_io_params(
    struct darshan_file *file, int write_flag, int coll_flag, int64_t io_cycles, 
    size_t *io_sz, off_t *io_off)
{
    static int seq_rd_flag = -1;
    static int seq_wr_flag = -1;
    static uint64_t next_rd_off = 0;
    static uint64_t next_wr_off = 0;
    static int64_t rd_common_accesses[4] = { 0, 0, 0, 0 };
    static int64_t wr_common_accesses[4] = { 0, 0, 0, 0 };
    static int all_common_flag = -1;
    int64_t *size_bins; /* 10 size bins for io operations */
    int64_t *common_accesses = &(file->counters[CP_ACCESS1_ACCESS]); /* 4 common accesses */
    int64_t *common_access_counts = &(file->counters[CP_ACCESS1_COUNT]); /* common access counts */
    int64_t *total_io_size;
    int64_t last_io_byte;
    int64_t tmp_byte_counter = 0;
    int size_bin_ndx;
    int i, j = 0;
    int64_t bin_min_size[10] = { 0, 100, 1024, 10 * 1024, 100 * 1024, 1024 * 1024, 4 * 1024 * 1024,
                                 10 * 1024 * 1024, 100 * 1024 * 1024, 1024 * 1024 * 1024 };
    int64_t bin_def_size[10] = { 40, 512, 4 * 1024, 60 * 1024, 512 * 1024, 2 * 1024 * 1024,
                                 6 * 1024 * 1024, 40 * 1024 * 1024, 400 * 1024 * 1024,
                                 1 * 1024 * 1024 * 1024 };

    /* determine how to assign common access counters to reads and/or writes */
    if (all_common_flag == -1)
    {
        for (i = 0; i < 4; i++)
        {
            tmp_byte_counter += (common_accesses[i] * common_access_counts[i]);
        }

        if (tmp_byte_counter == (file->counters[CP_BYTES_WRITTEN] + file->counters[CP_BYTES_READ]))
        {
            all_common_flag = 1;
        }
        else
        {
            all_common_flag = 0;
        }
    }

    /* assign data values depending on whether the operation is a read or write */
    if (write_flag)
    {
        size_bins = &(file->counters[CP_SIZE_WRITE_0_100]);
        total_io_size = &(file->counters[CP_BYTES_WRITTEN]);
        last_io_byte = file->counters[CP_MAX_BYTE_WRITTEN];

        if (seq_wr_flag == -1)
        {
            if ((file->counters[CP_POSIX_WRITES] -
                ((*total_io_size - last_io_byte - 1) / (last_io_byte + 1)) - 1) ==
                file->counters[CP_SEQ_WRITES])
            {
                seq_wr_flag = 1;
            }
            else
            {
                seq_wr_flag = 0;
            }
        }
    }
    else
    {
        size_bins = &(file->counters[CP_SIZE_READ_0_100]);
        total_io_size = &(file->counters[CP_BYTES_READ]);
        last_io_byte = file->counters[CP_MAX_BYTE_READ];

        if (seq_rd_flag == -1)
        {
            if ((file->counters[CP_POSIX_READS] -
                ((*total_io_size - last_io_byte - 1) / (last_io_byte + 1)) - 1) ==
                file->counters[CP_SEQ_READS])
            {
                seq_rd_flag = 1;
            }
            else
            {
                seq_rd_flag = 0;
            }
        }
    }

    *io_sz = 0;
    if ((*total_io_size ==  0) || (write_flag && (file->counters[CP_POSIX_WRITES] == 1)) ||
        (!write_flag && (file->counters[CP_POSIX_READS] == 1)))
    {
        if (*total_io_size >= 0)
            *io_sz = *total_io_size;
    }
    else if (all_common_flag)
    {
        for (i = 0; i < 4; i++)
        {
            if (!write_flag && rd_common_accesses[i])
            {
                *io_sz = common_accesses[i];
                rd_common_accesses[i]--;
                common_access_counts[i]--;
                break;
            }
            else if (write_flag && wr_common_accesses[i])
            {
                *io_sz = common_accesses[i];
                wr_common_accesses[i]--;
                common_access_counts[i]--;
                break;
            }
        }

        if (*io_sz == 0)
        {
            for (i = 0; i < 4; i++)
            {
                if (write_flag)
                {
                    wr_common_accesses[i] = (common_access_counts[i] / io_cycles);
                    if ((*io_sz == 0) && wr_common_accesses[i])
                    {
                        *io_sz = common_accesses[i];
                        wr_common_accesses[i]--;
                        common_access_counts[i]--;
                    }
                }
                else
                {
                    rd_common_accesses[i] = (common_access_counts[i] / io_cycles);
                    if ((*io_sz == 0) && rd_common_accesses[i])
                    {
                        *io_sz = common_accesses[i];
                        rd_common_accesses[i]--;
                        common_access_counts[i]--;
                    }
                }
            }
        }
        assert(*io_sz);
    }
    else
    {
        /* try to assign a common access first */
        for (i = 0; i < 10; i++)
        {
            for (j = 0; j < 4; j++)
            {
                if (size_bins[i] && common_access_counts[j] &&
                    IO_IS_IN_SIZE_BIN_RANGE(common_accesses[j], i, bin_min_size))
                {
                    *io_sz = common_accesses[j];
                    common_access_counts[j]--;
                    break;
                }
            }
            if (*io_sz)
                break;
        }

        /* if no common accesses left, then assign a random io size */
        if (*io_sz == 0)
        {
            size_bin_ndx = rand() % 10;
            for (i = 0; i <  10; i++)
            {
                if (size_bins[size_bin_ndx])
                {
                    *io_sz = bin_def_size[size_bin_ndx];
                    break;
                }
                size_bin_ndx = (size_bin_ndx + 1) % 10;
            }
        }
        assert(*io_sz);
    }

    *total_io_size -= *io_sz;
    for (i = 0; i < 10; i++)
    {
        if (IO_IS_IN_SIZE_BIN_RANGE(*io_sz, i, bin_min_size))
            size_bins[i]--;
    }

    /* next, determine the offset to use */

    /*  for now we just assign a random offset that makes sure not to write past the recorded
     *  last byte written in the file.
     */
    if (*io_sz == 0)
    {
        *io_off = last_io_byte + 1;
    }
    else if (write_flag && seq_wr_flag)
    {
        if ((next_wr_off + *io_sz) > (last_io_byte + 1))
            next_wr_off = 0;

        *io_off = next_wr_off;
        next_wr_off += *io_sz;
    }
    else if (!write_flag && seq_rd_flag)
    {
        if ((next_rd_off + *io_sz) > (last_io_byte + 1))
            next_rd_off = 0;

        *io_off = next_rd_off;
        next_rd_off += *io_sz;
    }
    else if (*io_sz < last_io_byte)
    {
        *io_off = (off_t)rand() % (last_io_byte - *io_sz);
    }
    else
    {
        *io_off = 0;
    }

    /* reset static variable if this is the last i/o op for this file */
    if ((file->counters[CP_POSIX_READS] + file->counters[CP_POSIX_WRITES]) == 1)
    {
        next_rd_off = next_wr_off = 0;
        seq_wr_flag = seq_rd_flag = -1;
        all_common_flag = -1;
        for (i = 0; i < 4; i++)
            rd_common_accesses[i] = wr_common_accesses[i] = 0;
    }

    return;
}

/* calculate the simulated "delay" between different i/o events using delay info
 * from the file counters */
static void calc_io_delays(
    struct darshan_file *file, int64_t num_opens, int64_t num_io_ops, double delay_per_cycle,
    double *first_io_delay, double *close_delay, double *inter_open_delay, double *inter_io_delay)
{
    double first_io_time, last_io_time;
    double first_io_pct, close_pct, inter_open_pct, inter_io_pct;
    double total_delay_pct;
    double tmp_inter_io_pct, tmp_inter_open_pct;

    if (delay_per_cycle > 0.0)
    {
        /* determine the time of the first io operation */
        if (!file->fcounters[CP_F_WRITE_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_READ_START_TIMESTAMP];
        else if (!file->fcounters[CP_F_READ_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_WRITE_START_TIMESTAMP];
        else if (file->fcounters[CP_F_READ_START_TIMESTAMP] <
                 file->fcounters[CP_F_WRITE_START_TIMESTAMP])
            first_io_time = file->fcounters[CP_F_READ_START_TIMESTAMP];
        else
            first_io_time = file->fcounters[CP_F_WRITE_START_TIMESTAMP];

        /* determine the time of the last io operation */
        if (file->fcounters[CP_F_READ_END_TIMESTAMP] > file->fcounters[CP_F_WRITE_END_TIMESTAMP])
            last_io_time = file->fcounters[CP_F_READ_END_TIMESTAMP];
        else
            last_io_time = file->fcounters[CP_F_WRITE_END_TIMESTAMP];

        /* no delay contribution for inter-open delay if there is only a single open */
        if (num_opens > 1)
            inter_open_pct = DEF_INTER_CYC_DELAY_PCT;

        /* no delay contribution for inter-io delay if there is one or less io op */
1294
        if ((num_io_ops - num_opens) > 0)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
            inter_io_pct = DEF_INTER_IO_DELAY_PCT;

        /* determine delay contribution for first io and close delays */
        if (first_io_time != 0.0)
        {
            first_io_pct = (first_io_time - file->fcounters[CP_F_OPEN_TIMESTAMP]) / delay_per_cycle;
            close_pct = (file->fcounters[CP_F_CLOSE_TIMESTAMP] - last_io_time) / delay_per_cycle;
        }
        else
        {
            first_io_pct = 0.0;
            close_pct = 1 - inter_open_pct;
        }

        /* adjust per open delay percentages using a simple heuristic */
        total_delay_pct = inter_open_pct + inter_io_pct + first_io_pct + close_pct;
        if ((total_delay_pct < 1) && (inter_open_pct || inter_io_pct))
        {
            /* only adjust inter-open and inter-io delays if we underestimate */
            tmp_inter_open_pct = (inter_open_pct / (inter_open_pct + inter_io_pct)) *
                                 (1 - first_io_pct - close_pct);
            tmp_inter_io_pct = (inter_io_pct / (inter_open_pct + inter_io_pct)) *
                               (1 - first_io_pct - close_pct);
            inter_open_pct = tmp_inter_open_pct;
            inter_io_pct = tmp_inter_io_pct;
        }
        else
        {
            inter_open_pct += (inter_open_pct / total_delay_pct) * (1 - total_delay_pct);
            inter_io_pct += (inter_io_pct / total_delay_pct) * (1 - total_delay_pct);
            first_io_pct += (first_io_pct / total_delay_pct) * (1 - total_delay_pct);
            close_pct += (close_pct / total_delay_pct) * (1 - total_delay_pct);
        }

        *first_io_delay = (first_io_pct * delay_per_cycle);
        *close_delay = (close_pct * delay_per_cycle);
1331 1332 1333 1334 1335 1336 1337

        if (num_opens > 1)
            *inter_open_delay = (inter_open_pct * delay_per_cycle) *
                                ((double)num_opens / (num_opens - 1));
        if ((num_io_ops - num_opens) > 0)
            *inter_io_delay = (inter_io_pct * delay_per_cycle) *
                              ((double)num_io_ops / (num_io_ops - num_opens));
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    }

    return;
}

/* check to make sure file stats are valid and properly formatted */
static void file_sanity_check(
    struct darshan_file *file, struct darshan_job *job)
{
    assert(file->counters[CP_POSIX_OPENS] != -1);
    assert(file->fcounters[CP_F_OPEN_TIMESTAMP] != -1);
    assert(file->counters[CP_COLL_OPENS] != -1);
    assert(file->fcounters[CP_F_CLOSE_TIMESTAMP] != -1);
    assert(file->counters[CP_POSIX_READS] != -1);
    assert(file->counters[CP_POSIX_WRITES] != -1);
    assert(file->fcounters[CP_F_POSIX_READ_TIME] != -1);
    assert(file->fcounters[CP_F_POSIX_WRITE_TIME] != -1);
    assert(file->fcounters[CP_F_POSIX_META_TIME] != -1);
    assert(file->fcounters[CP_F_READ_START_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_WRITE_START_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_READ_END_TIMESTAMP] != -1);
    assert(file->fcounters[CP_F_WRITE_END_TIMESTAMP] != -1);
    assert(file->counters[CP_BYTES_READ] != -1);
    assert(file->counters[CP_BYTES_WRITTEN] != -1);
    assert(file->counters[CP_RW_SWITCHES] != -1);

    /* adjust timestamps if they are given in absolute unix time */
    if (file->fcounters[CP_F_OPEN_TIMESTAMP] > job->start_time)
    {
        file->fcounters[CP_F_OPEN_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_OPEN_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_OPEN_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_READ_START_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_READ_START_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_READ_START_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_WRITE_START_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_WRITE_START_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_WRITE_START_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_CLOSE_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_CLOSE_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_CLOSE_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_READ_END_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_READ_END_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_READ_END_TIMESTAMP] = 0.0;

        file->fcounters[CP_F_WRITE_END_TIMESTAMP] -= job->start_time;
        if (file->fcounters[CP_F_WRITE_END_TIMESTAMP] < 0.0)
            file->fcounters[CP_F_WRITE_END_TIMESTAMP] = 0.0;
    }

    /* set file close time to the end of execution if it is not given */
    if (file->fcounters[CP_F_CLOSE_TIMESTAMP] == 0.0)
        file->fcounters[CP_F_CLOSE_TIMESTAMP] = job->end_time - job->start_time + 1;

    /* collapse fopen/fread/etc. calls into the corresponding open/read/etc. counters */
    file->counters[CP_POSIX_OPENS] += file->counters[CP_POSIX_FOPENS];
    file->counters[CP_POSIX_READS] += file->counters[CP_POSIX_FREADS];
    file->counters[CP_POSIX_WRITES] += file->counters[CP_POSIX_FWRITES];

    return;
}
1403 1404 1405 1406 1407 1408 1409 1410 1411

/*
 * Local variables:
 *  c-indent-level: 4
 *  c-basic-offset: 4
 * End:
 *
 * vim: ft=c ts=8 sts=4 sw=4 expandtab
 */