dragonfly.c 61.3 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12 13 14 15 16
#include <ross.h>

#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
17 18
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
19 20 21 22

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

23 24 25
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
26
#define DRAGONFLY_COLLECTIVE_DEBUG 0
27 28 29 30
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0

31 32 33 34 35
// debugging parameters
#define TRACK 235221
#define PRINT_ROUTER_TABLE 1
#define DEBUG 1

36 37 38
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

39 40
static double maxd(double a, double b) { return a < b ? b : a; }

41 42
// arrival rate
static double MEAN_INTERVAL=200.0;
43 44
// threshold for adaptive routing
static int adaptive_threshold = 10;
45 46

/* minimal and non-minimal packet counts for adaptive routing*/
47
int minimal_count=0, nonmin_count=0;
48

49 50 51 52 53 54
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
55 56

/* global variables for codes mapping */
57
static char lp_group_name[MAX_NAME_LENGTH];
58 59
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int routing; /* minimal or non-minimal routing */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/

    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
    int num_global_channels;
};

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
130 131 132

   const char * anno;
   const dragonfly_param *params;
133
};
134

135 136 137 138 139 140 141 142 143
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
144 145 146 147
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
171 172 173
    MINIMAL = 0,
    NON_MINIMAL,
    ADAPTIVE
174 175 176 177 178 179 180 181 182 183 184 185
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
   int* vc_occupancy;
   int* output_vc_state;
186 187 188

   const char * anno;
   const dragonfly_param *params;
189 190 191 192 193 194
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
195
static tw_stime         max_collective = 0;
196 197 198 199 200 201 202 203 204 205 206 207 208 209


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}

210 211 212
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

    configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
            &p->num_vcs);
    if(p->num_vcs <= 0) {
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
    }

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
    if(!p->local_vc_size) {
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
    if(!p->global_vc_size) {
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
    if(!p->cn_vc_size) {
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
    if(!p->chunk_size) {
        p->chunk_size = 64;
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
    if(!p->local_bandwidth) {
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
    if(!p->global_bandwidth) {
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
    if(!p->cn_bandwidth) {
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }


    char routing[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing,
            MAX_NAME_LENGTH);
    if(strcmp(routing, "minimal") == 0)
        p->routing = 0;
    else if(strcmp(routing, "nonminimal")==0 || strcmp(routing,"non-minimal")==0)
        p->routing = 1;
    else if (strcmp(routing, "adaptive") == 0)
        p->routing = 2;
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
        p->routing = 0;
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
    p->radix = p->num_vcs *
        (p->num_cn + p->num_global_channels + p->num_routers);
    p->total_routers = p->num_groups * p->num_routers;
}

static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
    all_params = malloc(num_params * sizeof(*all_params));

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i];
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
310 311 312 313 314 315 316 317
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
/* TODO: Add dragonfly packet average, maximum latency and average number of hops traversed */
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
318
   int total_minimal_packets, total_nonmin_packets;
319 320 321 322 323

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
324 325 326 327 328
   if(routing == ADAPTIVE)
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
329 330 331 332 333

   /* print statistics */
   if(!g_tw_mynode)
   {
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
334 335 336 337
     if(routing == ADAPTIVE)
              printf("\n ADAPTIVE ROUTING STATS: %d packets routed minimally %d packets routed non-minimally ", total_minimal_packets, total_nonmin_packets);
 
  }
338 339
   return;
}
340

341 342 343
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
344 345 346 347 348
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

399
/* dragonfly packet event , generates a dragonfly packet on the compute node */
400
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, const mn_sched_params *sched_params, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
401 402 403 404 405 406
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

407
    xfer_to_nic_time = codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
408 409
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
410 411 412
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
413 414
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
415
    msg->sender_lp=src_lp;
416 417 418 419
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
420 421
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
438
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
439
    tw_event_send(e_new);
440
    return xfer_to_nic_time;
441 442 443 444 445 446 447 448 449 450 451 452 453 454
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

/* given a group ID gid, find the router in the current group that is attached
 * to a router in the group gid */
tw_lpid getRouterFromGroupID(int gid, 
		    router_state * r)
{
455 456 457 458
    const dragonfly_param *p = r->params;
  int group_begin = r->group_id * p->num_routers;
  int group_end = (r->group_id * p->num_routers) + p->num_routers-1;
  int offset = (gid * p->num_routers - group_begin) / p->num_routers;
459
  
460 461
  if((gid * p->num_routers) < group_begin)
    offset = (group_begin - gid * p->num_routers) / p->num_routers; // take absolute value
462
  
463 464
  int half_channel = p->num_global_channels / 2;
  int index = (offset - 1)/(half_channel * p->num_routers);
465
  
466
  offset=(offset - 1) % (half_channel * p->num_routers);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
487
  int is_terminal = 0;
488

489
  const dragonfly_param *p = s->params;
490 491 492 493 494
 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
   //determine the time in ns to transfer the credit
495
   credit_delay = (1 / p->cn_bandwidth) * CREDIT_SIZE;
496
   type = T_BUFFER;
497
   is_terminal = 1;
498 499 500 501
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
502
     credit_delay = (1 / p->global_bandwidth) * CREDIT_SIZE;
503 504 505 506
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
507
     	credit_delay = (1/p->local_bandwidth) * CREDIT_SIZE;
508 509 510 511 512
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
513
    int output_port = msg->saved_vc / p->num_vcs;
514
    msg->saved_available_time = s->next_credit_available_time[output_port];
515
    s->next_credit_available_time[output_port] = maxd(tw_now(lp), s->next_credit_available_time[output_port]);
516
    ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
517 518
	
    s->next_credit_available_time[output_port]+=ts;
519 520 521 522 523 524 525 526 527
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
                s->next_credit_available_time[output_port] - tw_now(lp), lp,
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
        buf_e = tw_event_new(dest, s->next_credit_available_time[output_port] - tw_now(lp) , lp);
        buf_msg = tw_event_data(buf_e);
    }
528 529 530 531 532 533 534 535 536 537 538 539 540
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
541 542 543 544 545 546 547 548 549
    tw_lpid dest_terminal_id;
    codes_mapping_get_lp_info(msg->final_dest_gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
            mapping_rep_id, mapping_offset, &dest_terminal_id);
    msg->dest_terminal_id = dest_terminal_id;

    const dragonfly_param *p = s->params;

550 551 552
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
553
  int i, total_event_size;
554 555 556
  uint64_t num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
      num_chunks++;
557 558
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
559
  msg->my_N_hop = 0;
560 561
  for(i = 0; i < num_chunks; i++)
  {
562 563
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
564
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
565
	int chan = -1, j;
566
	for(j = 0; j < p->num_vcs; j++)
567
	 {
568
	     if(s->vc_occupancy[j] < p->cn_vc_size * num_chunks)
569 570 571 572 573 574
	      {
	       chan=j;
	       break;
	      }
         }

575 576 577 578 579 580 581 582
        // this is a terminal event, so use the method-event version
       //e = tw_event_new(lp->gid, i + ts, lp);
       //m = tw_event_data(e);
       //memcpy(m, msg, sizeof(terminal_message) + msg->remote_event_size_bytes + msg->local_event_size_bytes);
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
583
       m->dest_terminal_id = dest_terminal_id;
584 585 586 587 588 589 590 591 592
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
       
       if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
       
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
614 615
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
616 617 618 619
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
620
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
621 622
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
639
   double head_delay = (1/s->params->cn_bandwidth) * s->params->chunk_size;
640
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
641
   s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
642 643
   s->terminal_available_time += ts;

644 645 646 647 648
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
           s->router_id, 0, &router_id);
649
   // we are sending an event to the router, so no method_event here
650 651
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

652 653 654 655
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;

656 657 658
   if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
     printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
   m = tw_event_data(e);
659 660 661 662 663
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
664 665 666 667 668 669 670 671 672 673 674
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
   m->local_event_size_bytes = 0;
   tw_event_send(e);
//  Each chunk is 32B and the VC occupancy is in chunks to enable efficient flow control

   if(msg->chunk_id == num_chunks - 1) 
    {
675 676 677
      // now that message is sent, issue an "idle" event to tell the scheduler
      // when I'm next available
      model_net_method_idle_event(codes_local_latency(lp) +
678
              s->terminal_available_time - tw_now(lp), 0, lp);
679

680 681 682 683 684
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
685 686 687
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
688
	   ts = g_tw_lookahead + (1/s->params->cn_bandwidth) * msg->local_event_size_bytes;
689
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
690 691 692 693 694 695 696 697 698
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

699
   if(s->vc_occupancy[vc] >= (s->params->cn_vc_size * num_chunks))
700 701 702 703 704 705 706
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
707 708 709
    uint64_t num_chunks = msg->packet_size / s->params->chunk_size;
    if (msg->packet_size % s->params->chunk_size)
        num_chunks++;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
#if DEBUG
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
735 736 737 738 739
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

740 741 742 743 744 745 746 747 748 749 750 751 752
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
753
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
754
            ts = g_tw_lookahead + 0.1 + (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
755
            if (msg->is_pull){
756
                int net_id = model_net_get_id(LP_METHOD_NM);
757 758 759 760 761 762 763 764 765 766
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
767 768 769
	}
  }

770
  int credit_delay = (1 / s->params->cn_bandwidth) * CREDIT_SIZE;
771
  ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, credit_delay/1000);
772
  
773
  msg->saved_credit_time = s->next_credit_available_time;
774
  s->next_credit_available_time = maxd(s->next_credit_available_time, tw_now(lp));
775 776 777
  s->next_credit_available_time += ts;

  tw_lpid router_dest_id;
778 779 780
  //TODO: be annotation-aware
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
          &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
781
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0,
782
          s->router_id, 0, &router_dest_id);
783
  // no method_event here - message going to router
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
  buf_e = tw_event_new(router_dest_id, s->next_credit_available_time - tw_now(lp), lp);
  buf_msg = tw_event_data(buf_e);
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    int i;
801 802
    char anno[MAX_NAME_LENGTH];

803
    // Assign the global router ID
804
    // TODO: be annotation-aware
805 806 807 808 809 810 811
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
812
        s->anno = strdup(anno);
813 814 815 816
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

817
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
818
           s->anno, 0);
819 820

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
821
   s->router_id=(int)s->terminal_id / s->params->num_routers;
822 823 824
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

825 826
   s->vc_occupancy = (int*)malloc(s->params->num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(s->params->num_vcs * sizeof(int));
827

828
   for( i = 0; i < s->params->num_vcs; i++ )
829 830 831 832
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
833
   dragonfly_collective_init(s, lp);
834 835 836
   return;
}

837 838 839 840 841 842 843 844 845
/* collective operation for the torus network */
void dragonfly_collective(char* category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

846 847 848 849
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
850

851
    xfer_to_nic_time = codes_local_latency(sender);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
891
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
920 921 922 923 924
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
925 926
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
927 928
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

959 960 961
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
962
                s->anno, 0);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
981
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
982 983
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
1020 1021 1022
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
                        s->children[i]/num_lps, (s->children[i] % num_lps),
                        &child_nic_id);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
1033
	                memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
1051 1052
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
                NULL, 1);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
1074
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM,
1075
                                s->anno, 0, s->children[i]/num_lps,
1076
                                (s->children[i] % num_lps), &child_nic_id);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
1144 1145 1146 1147
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1148

1149 1150 1151 1152 1153 1154 1155 1156
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1157 1158 1159 1160 1161 1162
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1163
dragonfly_terminal_final( terminal_state * s, 
1164 1165
      tw_lp * lp )
{
1166
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1167 1168
}

1169 1170 1171 1172 1173
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
		      int path)
{
   int dest_lp;
1185
   tw_lpid router_dest_id = -1;
1186 1187 1188
   int i;
   int dest_group_id;

1189 1190 1191 1192 1193
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
           &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
           &mapping_offset); 
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
1194 1195
           s->anno, 0);
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / s->params->num_routers;
1196
   
1197 1198
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1199 1200 1201 1202
   int local_router_id = (mapping_offset + mapping_rep_id);

   bf->c2 = 0;

1203
  /* If the packet has arrived at the destination router */
1204 1205 1206 1207 1208 1209
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;

        return dest_lp;
    }
1210
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1211
   if(msg->last_hop == TERMINAL && msg->path_type == NON_MINIMAL)
1212
    {
1213
      if(dest_router_id / s->params->num_routers != s->group_id)
1214 1215
         {
            bf->c2 = 1;
1216
            int intm_grp_id = tw_rand_integer(lp->rng, 0, s->params->num_groups-1);
1217 1218
            //int intm_grp_id = (s->group_id + s->group_id/2) % num_groups;
	    msg->intm_group_id = intm_grp_id;
1219 1220
          }    
    }
1221
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1222 1223 1224 1225
   if(msg->intm_group_id == s->group_id)
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1226
  /* Intermediate group ID is set. Divert the packet to an intermediate group. */
1227 1228 1229 1230
  if(msg->intm_group_id >= 0)
   {
      dest_group_id = msg->intm_group_id;
   }
1231
  else /* direct the packet to the destination group */
1232
   {
1233
     dest_group_id = dest_router_id / s->params->num_routers;
1234 1235
   }
  
1236
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1237 1238 1239 1240 1241 1242
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1243
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1244 1245 1246 1247
      dest_lp=getRouterFromGroupID(dest_group_id,s);
  
      if(dest_lp == local_router_id)
      {
1248
        for(i=0; i < s->params->num_global_channels; i++)
1249
           {
1250
            if(s->global_channel[i] / s->params->num_routers == dest_group_id)
1251 1252 1253 1254
                dest_lp=s->global_channel[i];
          }
      }
   }
1255
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0, dest_lp,
1256
          0, &router_dest_id);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  return router_dest_id;
}

/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
1269 1270 1271
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
          &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
          &mapping_offset);
1272
  int num_lps = codes_mapping_get_lp_count(lp_group_name,1,LP_CONFIG_NM,s->anno,0);
1273
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1274 1275 1276

  if(next_stop == msg->dest_terminal_id)
   {
1277 1278
      output_port = s->params->num_routers + s->params->num_global_channels +
          ( terminal_id % s->params->num_cn);
1279 1280
      //if(output_port > 6)
	//      printf("\n incorrect output port %d terminal id %d ", output_port, terminal_id);
1281 1282 1283
    }
    else
    {
1284 1285
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id,
             NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1286
     int local_router_id = mapping_rep_id + mapping_offset;
1287
     int intm_grp_id = local_router_id / s->params->num_routers;
1288 1289 1290

     if(intm_grp_id != s->group_id)
      {
1291
        for(i=0; i < s->params->num_global_channels; i++)
1292
         {
1293
           if(s->global_channel[i] == local_router_id)
1294
             output_port = s->params->num_routers + i;
1295 1296 1297 1298
          }
      }
      else
       {
1299
        output_port = local_router_id % s->params->num_routers;
1300
       }
1301
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    }
    return output_port;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
1312
//   *(int *)bf = (int)0;
1313 1314 1315 1316 1317
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
1318 1319
   float bandwidth = s->params->local_bandwidth;
   int path = s->params->routing;
1320
   int minimal_out_port = -1, nonmin_out_port = -1;
1321 1322
   bf->c3 = 0;

1323 1324 1325 1326 1327 1328
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
    

   if(msg->last_hop == TERMINAL && s->params->routing == ADAPTIVE)
1329
   {
1330 1331 1332 1333 1334 1335 1336
  // decide which routing to take
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL);
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL);
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
1337 1338
    int nonmin_vc = s->vc_occupancy[nonmin_out_port * s->params->num_vcs + 2];
    int min_vc = s->vc_occupancy[minimal_out_port * s->params->num_vcs + 1];
1339 1340

    // Adaptive routing condition from the dragonfly paper Page 83
1341
   // modified according to booksim adaptive routing condition
1342 1343 1344
   if((min_vc <= (nonmin_vc * 2 + adaptive_threshold) && minimal_out_port == nonmin_out_port)
               || (min_port_count <= (nonmin_port_count * 2 + adaptive_threshold) && minimal_out_port != nonmin_out_port))
        {
1345
	   msg->path_type = MINIMAL;
1346 1347 1348 1349
           next_stop = minimal_next_stop;
           output_port = minimal_out_port;
           minimal_count++;
           msg->intm_group_id = -1;
1350

1351 1352 1353 1354 1355
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
1356
	   msg->path_type = NON_MINIMAL;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
           next_stop = nonmin_next_stop;
           output_port = nonmin_out_port;
           nonmin_count++;
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

         }
  }
  else
   {
1367
	msg->path_type = routing; /*defaults to the routing algorithm if we don't have adaptive routing here*/
1368 1369 1370
   	next_stop = get_next_stop(s, bf, msg, lp, path);
   	output_port = get_output_port(s, bf, msg, lp, next_stop); 
   }
1371
   output_chan = output_port * s->params->num_vcs;
1372

1373
    // Even numbered channels for minimal routing
1374
   // Odd numbered channels for nonminimal routing
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
   // Separate the queue occupancy into minimal and non minimal virtual channels if the min & non min
   // paths start at the same output port
   /*if((routing == ADAPTIVE) && (minimal_out_port == nonmin_out_port))
   {
        if(path == MINIMAL)
          output_chan = output_chan + 1;
        else
          if(path == NON_MINIMAL)
            output_chan = output_chan + 2;
   }*/

1386
   int global=0;
1387
   int buf_size = s->params->local_vc_size;
1388

1389 1390
   assert(output_port != -1);
   assert(output_chan != -1);
1391
   // Allocate output Virtual Channel
1392 1393
  if(output_port >= s->params->num_routers && 
          output_port < s->params->num_routers + s->params->num_global_channels)
1394
  {
1395
	 bandwidth = s->params->global_bandwidth;
1396
	 global = 1;
1397
	 buf_size = s->params->global_vc_size;
1398 1399
  }

1400 1401
  if(output_port >= s->params->num_routers + s->params->num_global_channels)
	buf_size = s->params->cn_vc_size;
1402 1403 1404

   if(s->vc_occupancy[output_chan] >= buf_size)
    {
1405
	    printf("\n %lf Router %ld buffers overflowed from incoming terminals channel %d occupancy %d radix %d next_stop %d ", tw_now(lp),(long int) lp->gid, output_chan, s->vc_occupancy[output_chan], s->params->radix, next_stop);
1406
	    bf->c3 = 1;
1407 1408 1409
	    return;
	    //MPI_Finalize();
	    //exit(-1);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    }

#if DEBUG
if( msg->packet_ID == TRACK && next_stop != msg->dest_terminal_id && msg->chunk_id == num_chunks-1)
  {
   printf("\n (%lf) [Router %d] Packet %lld being sent to intermediate group router %d Final destination terminal %d Output Channel Index %d Saved vc %d msg_intm_id %d \n", 
              tw_now(lp), (int)lp->gid, msg->packet_ID, next_stop, 
	      msg->dest_terminal_id, output_chan, msg->saved_vc, msg->intm_group_id);
  }
#endif
 // If source router doesn't have global channel and buffer space is available, then assign to appropriate intra-group virtual channel 
  msg->saved_available_time = s->next_output_available_time[output_port];
1422
  ts = g_tw_lookahead + 0.1 + ((1/bandwidth) * s->params->chunk_size) + tw_rand_exponential(lp->rng, (double)s->params->chunk_size/200);
1423

1424
  s->next_output_available_time[output_port] = maxd(s->next_output_available_time[output_port], tw_now(lp));
1425
  s->next_output_available_time[output_port] += ts;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  // dest can be a router or a terminal, so we must check
  void * m_data;
  if (next_stop == msg->dest_terminal_id){
      e = model_net_method_event_new(next_stop, 
              s->next_output_available_time[output_port] - tw_now(lp), lp,
              DRAGONFLY, (void**)&m, &m_data);
  }
  else{
      e = tw_event_new(next_stop, s->next_output_available_time[output_port] - tw_now(lp), lp);
      m = tw_event_data(e);
      m_data = m+1;
  }
  memcpy(m, msg, sizeof(terminal_message));
  if (msg->remote_event_size_bytes){
      memcpy(m_data, msg+1, msg->remote_event_size_bytes);
  }
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

  if(global)
    m->last_hop=GLOBAL;
  else
    m->last_hop = LOCAL;

  m->saved_vc = output_chan;
  msg->old_vc = output_chan;
  m->intm_lp_id = lp->gid;
  s->vc_occupancy[output_chan]++;

1453 1454
  /* Determine the event type. If the packet has arrived at the final destination
     router then it should arrive at the destination terminal next. */
1455 1456 1457 1458
  if(next_stop == msg->dest_terminal_id)
  {
    m->type = T_ARRIVE;

1459
    if(s->vc_occupancy[output_chan] >= s->params->cn_vc_size * num_chunks)
1460 1461 1462 1463
      s->output_vc_state[output_chan] = VC_CREDIT;
  }
  else
  {
1464
    /* The packet has to be sent to another router */
1465 1466
    m->type = R_ARRIVE;

1467
   /* If this is a global channel then the buffer space is different */
1468 1469
   if( global )
   {
1470
     if(s->vc_occupancy[output_chan] >= s->params->global_vc_size * num_chunks )
1471 1472 1473 1474
       s->output_vc_state[output_chan] = VC_CREDIT;
   }
  else
    {
1475
     /* buffer space is less for local channels */
1476
     if( s->vc_occupancy[output_chan] >= s->params->local_vc_size * num_chunks )
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	s->output_vc_state[output_chan] = VC_CREDIT;
    }
  }
  tw_event_send(e);
  return;
}

/* Packet arrives at the router and a credit is sent back to the sending terminal/router */
void 
router_packet_receive( router_state * s, 
			tw_bf * bf, 
			terminal_message * msg, 
			tw_lp * lp )
{
    tw_event *e;
    terminal_message *m;
    tw_stime ts;

    msg->my_N_hop++;
1496
    ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, (double)MEAN_INTERVAL/200);
1497 1498 1499
    uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
    if(msg->packet_size % s->params->chunk_size)
        num_chunks++;
1500