dragonfly.c 65.1 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12 13 14 15 16
#include <ross.h>

#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
17 18
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
19 20 21 22

#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

23 24 25
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
26
#define DRAGONFLY_COLLECTIVE_DEBUG 0
27 28 29 30
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0

31
// debugging parameters
32
#define TRACK -1
33
#define PRINT_ROUTER_TABLE 1
34
#define DEBUG 0
35

36 37 38
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

39 40
static double maxd(double a, double b) { return a < b ? b : a; }

41 42
// arrival rate
static double MEAN_INTERVAL=200.0;
43 44
// threshold for adaptive routing
static int adaptive_threshold = 10;
45 46

/* minimal and non-minimal packet counts for adaptive routing*/
47
unsigned int minimal_count=0, nonmin_count=0, completed_packets;
48

49 50 51 52 53 54
typedef struct dragonfly_param dragonfly_param;
/* annotation-specific parameters (unannotated entry occurs at the 
 * last index) */
static uint64_t                  num_params = 0;
static dragonfly_param         * all_params = NULL;
static const config_anno_map_t * anno_map   = NULL;
55 56

/* global variables for codes mapping */
57
static char lp_group_name[MAX_NAME_LENGTH];
58 59
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
struct dragonfly_param
{
    // configuration parameters
    int num_routers; /*Number of routers in a group*/
    double local_bandwidth;/* bandwidth of the router-router channels within a group */
    double global_bandwidth;/* bandwidth of the inter-group router connections */
    double cn_bandwidth;/* bandwidth of the compute node channels connected to routers */
    int num_vcs; /* number of virtual channels */
    int local_vc_size; /* buffer size of the router-router channels */
    int global_vc_size; /* buffer size of the global channels */
    int cn_vc_size; /* buffer size of the compute node channels */
    int chunk_size; /* full-sized packets are broken into smaller chunks.*/

    // derived parameters
    int num_cn;
    int num_groups;
    int radix;
    int total_routers;
78
    int total_terminals;
79 80 81
    int num_global_channels;
};

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
130 131 132

   const char * anno;
   const dragonfly_param *params;
133
};
134

135 136 137 138 139 140 141 142 143
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
144 145 146 147
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
171 172
    MINIMAL = 0,
    NON_MINIMAL,
173 174
    ADAPTIVE,
    PROG_ADAPTIVE
175 176 177 178 179 180 181 182 183 184 185 186
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
   int* vc_occupancy;
   int* output_vc_state;
187 188 189

   const char * anno;
   const dragonfly_param *params;
190 191 192 193 194 195
};

static short routing = MINIMAL;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
196
static tw_stime         max_collective = 0;
197 198 199 200 201 202 203 204 205 206 207 208 209 210


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}

211 212 213
static void dragonfly_read_config(const char * anno, dragonfly_param *params){
    // shorthand
    dragonfly_param *p = params;
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    configuration_get_value_int(&config, "PARAMS", "num_routers", anno,
            &p->num_routers);
    if(p->num_routers <= 0) {
        p->num_routers = 4;
        fprintf(stderr, "Number of dimensions not specified, setting to %d\n",
                p->num_routers);
    }

    configuration_get_value_int(&config, "PARAMS", "num_vcs", anno,
            &p->num_vcs);
    if(p->num_vcs <= 0) {
        p->num_vcs = 1;
        fprintf(stderr, "Number of virtual channels not specified, setting to %d\n", p->num_vcs);
    }

    configuration_get_value_int(&config, "PARAMS", "local_vc_size", anno, &p->local_vc_size);
    if(!p->local_vc_size) {
        p->local_vc_size = 1024;
        fprintf(stderr, "Buffer size of local channels not specified, setting to %d\n", p->local_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "global_vc_size", anno, &p->global_vc_size);
    if(!p->global_vc_size) {
        p->global_vc_size = 2048;
        fprintf(stderr, "Buffer size of global channels not specified, setting to %d\n", p->global_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "cn_vc_size", anno, &p->cn_vc_size);
    if(!p->cn_vc_size) {
        p->cn_vc_size = 1024;
        fprintf(stderr, "Buffer size of compute node channels not specified, setting to %d\n", p->cn_vc_size);
    }

    configuration_get_value_int(&config, "PARAMS", "chunk_size", anno, &p->chunk_size);
    if(!p->chunk_size) {
        p->chunk_size = 64;
        fprintf(stderr, "Chunk size for packets is specified, setting to %d\n", p->chunk_size);
    }

    configuration_get_value_double(&config, "PARAMS", "local_bandwidth", anno, &p->local_bandwidth);
    if(!p->local_bandwidth) {
        p->local_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of local channels not specified, setting to %lf\n", p->local_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "global_bandwidth", anno, &p->global_bandwidth);
    if(!p->global_bandwidth) {
        p->global_bandwidth = 4.7;
        fprintf(stderr, "Bandwidth of global channels not specified, setting to %lf\n", p->global_bandwidth);
    }

    configuration_get_value_double(&config, "PARAMS", "cn_bandwidth", anno, &p->cn_bandwidth);
    if(!p->cn_bandwidth) {
        p->cn_bandwidth = 5.25;
        fprintf(stderr, "Bandwidth of compute node channels not specified, setting to %lf\n", p->cn_bandwidth);
    }


273 274
    char routing_str[MAX_NAME_LENGTH];
    configuration_get_value(&config, "PARAMS", "routing", anno, routing_str,
275
            MAX_NAME_LENGTH);
276 277 278 279 280 281 282 283
    if(strcmp(routing_str, "minimal") == 0)
        routing = MINIMAL;
    else if(strcmp(routing_str, "nonminimal")==0 || strcmp(routing_str,"non-minimal")==0)
        routing = NON_MINIMAL;
    else if (strcmp(routing_str, "adaptive") == 0)
        routing = ADAPTIVE;
    else if (strcmp(routing_str, "prog-adaptive") == 0)
	routing = PROG_ADAPTIVE;
284 285 286 287
    else
    {
        fprintf(stderr, 
                "No routing protocol specified, setting to minimal routing\n");
288
        routing = -1;
289 290 291 292 293 294 295 296 297
    }

    // set the derived parameters
    p->num_cn = p->num_routers/2;
    p->num_global_channels = p->num_routers/2;
    p->num_groups = p->num_routers * p->num_cn + 1;
    p->radix = p->num_vcs *
        (p->num_cn + p->num_global_channels + p->num_routers);
    p->total_routers = p->num_groups * p->num_routers;
298 299 300 301 302
    p->total_terminals = p->total_routers * p->num_cn;
    printf("\n Total nodes %d routers %d groups %d radix %d ", p->num_cn * p->total_routers,
								p->total_routers,
								p->num_groups,
								p->radix);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
}

static void dragonfly_configure(){
    anno_map = codes_mapping_get_lp_anno_map(LP_CONFIG_NM);
    assert(anno_map);
    num_params = anno_map->num_annos + (anno_map->has_unanno_lp > 0);
    all_params = malloc(num_params * sizeof(*all_params));

    for (uint64_t i = 0; i < anno_map->num_annos; i++){
        const char * anno = anno_map->annotations[i];
        dragonfly_read_config(anno, &all_params[i]);
    }
    if (anno_map->has_unanno_lp > 0){
        dragonfly_read_config(NULL, &all_params[anno_map->num_annos]);
    }
318 319 320 321 322 323 324
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
325
   int total_minimal_packets, total_nonmin_packets;
326 327 328 329 330

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
331
   if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
332 333 334 335
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
336 337 338

   /* print statistics */
   if(!g_tw_mynode)
339
   {	
340
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
341 342
     if(routing == ADAPTIVE || routing == PROG_ADAPTIVE)
              printf("\n ADAPTIVE ROUTING STATS: %d packets routed minimally %d packets routed non-minimally completed packets %d ", total_minimal_packets, total_nonmin_packets, completed_packets);
343 344
 
  }
345 346
   return;
}
347

348 349 350
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
351 352 353 354 355
    // TODO: be annotation-aware
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
            NULL, 1);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

406
/* dragonfly packet event , generates a dragonfly packet on the compute node */
407
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, const mn_sched_params *sched_params, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
408 409 410 411 412 413
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    char* tmp_ptr;

414
    xfer_to_nic_time = codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
415 416
    //printf("\n transfer in time %f %f ", xfer_to_nic_time+offset, tw_now(sender));
    //e_new = tw_event_new(sender->gid, xfer_to_nic_time+offset, sender);
417 418 419
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
420 421
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
422
    msg->sender_lp=src_lp;
423 424 425 426
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
427 428
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
445
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
446
    tw_event_send(e_new);
447
    return xfer_to_nic_time;
448 449 450 451 452 453 454 455 456
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

457 458 459 460
/* given two group IDs, find the router of the src_gid that connects to the dest_gid*/
tw_lpid getRouterFromGroupID(int dest_gid, 
		    int src_gid,
		    int num_routers)
461
{
462 463 464
  int group_begin = src_gid * num_routers;
  int group_end = (src_gid * num_routers) + num_routers-1;
  int offset = (dest_gid * num_routers - group_begin) / num_routers;
465
  
466 467
  if((dest_gid * num_routers) < group_begin)
    offset = (group_begin - dest_gid * num_routers) / num_routers; // take absolute value
468
  
469 470
  int half_channel = num_routers / 4;
  int index = (offset - 1)/(half_channel * num_routers);
471
  
472
  offset=(offset - 1) % (half_channel * num_routers);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
493
  int is_terminal = 0;
494

495
  const dragonfly_param *p = s->params;
496
  int sender_radix;
497 498 499 500
 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
501
   sender_radix = msg->local_id % p->num_cn;  
502
   //determine the time in ns to transfer the credit
503
   credit_delay = (1 / p->cn_bandwidth) * CREDIT_SIZE;
504
   type = T_BUFFER;
505
   is_terminal = 1;
506 507 508 509
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
510
     sender_radix = p->num_cn + (msg->local_id % p->num_global_channels);
511
     credit_delay = (1 / p->global_bandwidth) * CREDIT_SIZE;
512 513 514 515
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
516
        sender_radix = p->num_cn + p->num_global_channels + (msg->local_id % p->num_routers);
517
     	credit_delay = (1/p->local_bandwidth) * CREDIT_SIZE;
518 519 520 521 522
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
523
    assert(sender_radix < s->params->radix );
524
    int output_port = msg->saved_vc / p->num_vcs;
525 526 527

    msg->saved_available_time = s->next_credit_available_time[sender_radix];
    s->next_credit_available_time[sender_radix] = maxd(tw_now(lp), s->next_credit_available_time[output_port]);
528
    ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
529
	
530
    s->next_credit_available_time[sender_radix]+=ts;
531 532
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
533
                s->next_credit_available_time[sender_radix] - tw_now(lp), lp,
534 535 536
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
537
        buf_e = tw_event_new(dest, s->next_credit_available_time[sender_radix] - tw_now(lp) , lp);
538 539
        buf_msg = tw_event_data(buf_e);
    }
540 541
    //if(dest == TRACK)
//	printf("\n LP %d sending credit back to dest %d at channel %d last hop %d ", lp->gid, dest, msg->saved_vc, msg->last_hop);
542
    buf_msg->origin_router_id = s->router_id;
543 544 545 546 547 548 549 550 551 552 553 554 555
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
556
    tw_lpid dest_terminal_id;
557 558
    dest_terminal_id = model_net_find_local_device(DRAGONFLY, s->anno, 0,
            msg->final_dest_gid);
559 560 561 562
    msg->dest_terminal_id = dest_terminal_id;

    const dragonfly_param *p = s->params;

563 564 565
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
566
  int i, total_event_size;
567 568 569
  uint64_t num_chunks = msg->packet_size / p->chunk_size;
  if (msg->packet_size % s->params->chunk_size)
      num_chunks++;
570 571
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
572
  msg->my_N_hop = 0;
573 574
  for(i = 0; i < num_chunks; i++)
  {
575 576
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
577
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
578
	int chan = -1, j;
579
	for(j = 0; j < p->num_vcs; j++)
580
	 {
581
	     if(s->vc_occupancy[j] < p->cn_vc_size * num_chunks)
582 583 584 585 586 587
	      {
	       chan=j;
	       break;
	      }
         }

588 589 590 591 592
        // this is a terminal event, so use the method-event version
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
593
       m->dest_terminal_id = dest_terminal_id;
594 595 596 597 598 599 600 601 602
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
603 604 605 606
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
       
607
      /* if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
608
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
609
       */
610 611 612 613 614 615 616 617 618 619 620 621 622 623
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
624 625
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
626 627 628 629
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
630
  stat->send_time += (1/p->cn_bandwidth) * msg->packet_size;
631 632
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
649
   double head_delay = (1/s->params->cn_bandwidth) * s->params->chunk_size;
650
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
651
   s->terminal_available_time = maxd(s->terminal_available_time, tw_now(lp));
652 653
   s->terminal_available_time += ts;

654 655 656 657 658
   //TODO: be annotation-aware
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", NULL, 1,
           s->router_id, 0, &router_id);
659
   // we are sending an event to the router, so no method_event here
660 661
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

662 663 664 665
   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;

666 667
   //if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
   //  printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
668
   m = tw_event_data(e);
669 670 671 672 673
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
674
   m->origin_router_id = s->router_id;
675 676 677 678 679
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
680
   m->path_type = -1;
681
   m->local_event_size_bytes = 0;
682
   m->local_id = s->terminal_id;
683 684 685 686
   tw_event_send(e);

   if(msg->chunk_id == num_chunks - 1) 
    {
687 688 689
      // now that message is sent, issue an "idle" event to tell the scheduler
      // when I'm next available
      model_net_method_idle_event(codes_local_latency(lp) +
690
              s->terminal_available_time - tw_now(lp), 0, lp);
691

692 693 694 695 696
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
697 698 699
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
700
	   ts = g_tw_lookahead + (1/s->params->cn_bandwidth) * msg->local_event_size_bytes;
701
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
702 703 704 705 706 707 708 709 710
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

711
   if(s->vc_occupancy[vc] >= (s->params->cn_vc_size * num_chunks))
712 713 714 715 716 717 718
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
719 720 721
    uint64_t num_chunks = msg->packet_size / s->params->chunk_size;
    if (msg->packet_size % s->params->chunk_size)
        num_chunks++;
722 723 724 725 726 727 728 729

    completed_packets++;

    if(msg->path_type == MINIMAL)
	minimal_count++;

    if(msg->path_type == NON_MINIMAL)
	nonmin_count++;
730 731 732
    
    if(msg->path_type != MINIMAL && msg->path_type != NON_MINIMAL)
	printf("\n Wrong message path type %d ", msg->path_type);
733
#if DEBUG == 1
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
758 759 760 761 762
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

763 764 765 766 767 768 769 770 771 772 773 774 775
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
776
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
777
            ts = g_tw_lookahead + 0.1 + (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
778
            if (msg->is_pull){
779
                int net_id = model_net_get_id(LP_METHOD_NM);
780 781 782 783 784 785 786 787 788 789
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
790 791 792
	}
  }

793
  int credit_delay = (1 / s->params->cn_bandwidth) * CREDIT_SIZE;
794
  ts = credit_delay + 0.1 + tw_rand_exponential(lp->rng, credit_delay/1000);
795
  
796
  msg->saved_credit_time = s->next_credit_available_time;
797
  s->next_credit_available_time = maxd(s->next_credit_available_time, tw_now(lp));
798 799
  s->next_credit_available_time += ts;

800 801
  if(msg->intm_lp_id == TRACK)
	printf("\n terminal sending credit at chan %d ", msg->saved_vc);
802
  //TODO: be annotation-aware
803
  // no method_event here - message going to router
804
  buf_e = tw_event_new(msg->intm_lp_id, s->next_credit_available_time - tw_now(lp), lp);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
  buf_msg = tw_event_data(buf_e);
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    int i;
821 822
    char anno[MAX_NAME_LENGTH];

823
    // Assign the global router ID
824
    // TODO: be annotation-aware
825 826 827 828 829 830 831
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
            &mapping_type_id, anno, &mapping_rep_id, &mapping_offset);
    if (anno[0] == '\0'){
        s->anno = NULL;
        s->params = &all_params[num_params-1];
    }
    else{
832
        s->anno = strdup(anno);
833 834 835 836
        int id = configuration_get_annotation_index(anno, anno_map);
        s->params = &all_params[id];
    }

837
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
838
           s->anno, 0);
839 840

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
Misbah Mubarak's avatar
Misbah Mubarak committed
841
   s->router_id=(int)s->terminal_id / (s->params->num_routers/2);
842 843 844
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

845 846
   s->vc_occupancy = (int*)malloc(s->params->num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(s->params->num_vcs * sizeof(int));
847

848
   for( i = 0; i < s->params->num_vcs; i++ )
849 850 851 852
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
853
   dragonfly_collective_init(s, lp);
854 855 856
   return;
}

857 858 859 860 861 862 863 864 865
/* collective operation for the torus network */
void dragonfly_collective(char* category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

866 867 868 869
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id,
            NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
            mapping_rep_id, mapping_offset, &local_nic_id);
870

871
    xfer_to_nic_time = codes_local_latency(sender);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
911
            ts = (1/s->params->cn_bandwidth) * msg->remote_event_size_bytes;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
940 941 942 943 944
            // TODO: be annotation-aware
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                    NULL, &mapping_type_id, NULL, &mapping_rep_id,
                    &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
945 946
                    s->anno, 0);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
947 948
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

979 980 981
        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id,
                NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
982
                s->anno, 0);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
1001
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->anno, 0,
1002 1003
                    s->parent_node_id/num_lps, (s->parent_node_id % num_lps),
                    &parent_nic_id);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
1040 1041 1042
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, NULL, 1,
                        s->children[i]/num_lps, (s->children[i] % num_lps),
                        &child_nic_id);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
1053
	                memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
1071 1072
        int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
                NULL, 1);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
1094
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM,
1095
                                s->anno, 0, s->children[i]/num_lps,
1096
                                (s->children[i] % num_lps), &child_nic_id);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
1135
    assert(s->vc_occupancy[msg_indx] >= 0);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
1165 1166 1167 1168
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1169

1170 1171 1172 1173 1174 1175 1176 1177
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1178 1179 1180 1181 1182 1183
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1184
dragonfly_terminal_final( terminal_state * s, 
1185 1186
      tw_lp * lp )
{
1187
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1188 1189
}

1190 1191 1192 1193 1194
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

/* Get the number of hops for this particular path source and destination groups */
int get_num_hops(int local_router_id,
		 int dest_router_id,
		 int num_routers,
		 int non_min)
{
   int local_grp_id = local_router_id / num_routers;
   int dest_group_id = dest_router_id / num_routers;
   int num_hops = 4;

   /* Already at the destination router */
   if(local_router_id == dest_router_id)
    {
	return 1; /* already at the destination, traverse one hop only*/
    }
   else if(local_grp_id == dest_group_id)
    {
		return 2; /* in the same group, each router is connected so 2 additional hops to traverse (source and dest routers). */		
    }	

     /* if the router in the source group has direct connection to the destination group */
     tw_lpid src_connecting_router = getRouterFromGroupID(dest_group_id, local_grp_id, num_routers);

     if(src_connecting_router == local_router_id)		
		num_hops--;

     tw_lpid dest_connecting_router = getRouterFromGroupID(local_grp_id, dest_group_id, num_routers);	

     if(dest_connecting_router == dest_router_id)	
			num_hops--;

     return num_hops;
}

1230 1231 1232 1233 1234 1235 1236 1237
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
1238 1239 1240
		      int path,
		      int dest_router_id,
		      int intm_id)
1241 1242
{
   int dest_lp;
1243
   tw_lpid router_dest_id = -1;
1244 1245 1246
   int i;
   int dest_group_id;

1247 1248
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, NULL,
           &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1249 1250 1251 1252
   int local_router_id = (mapping_offset + mapping_rep_id);

   bf->c2 = 0;

1253
  /* If the packet has arrived at the destination router */
1254 1255 1256 1257 1258
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;
        return dest_lp;
    }
1259
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1260
   if(msg->last_hop == TERMINAL && msg->path_type == NON_MINIMAL)
1261
    {
1262
      if(dest_router_id / s->params->num_routers != s->group_id)
1263 1264
         {
            bf->c2 = 1;
1265
	    msg->intm_group_id = intm_id;
1266 1267
          }    
    }
1268
   /******************** DECIDE THE DESTINATION GROUP ***********************/
1269
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1270 1271 1272 1273
   if(msg->intm_group_id == s->group_id)
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1274
  /* Intermediate group ID is set. Divert the packet to the intermediate group. */
1275 1276 1277 1278
  if(msg->intm_group_id >= 0)
   {
      dest_group_id = msg->intm_group_id;
   }
1279
  else /* direct the packet to the destination group */
1280
   {
1281
     dest_group_id = dest_router_id / s->params->num_routers;
1282
   }
1283 1284
 
/********************** DECIDE THE ROUTER IN THE DESTINATION GROUP ***************/ 
1285
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1286 1287 1288 1289 1290 1291
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1292
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1293
      dest_lp=getRouterFromGroupID(dest_group_id,s->router_id/s->params->num_routers, s->params->num_routers);
1294 1295 1296
  
      if(dest_lp == local_router_id)
      {
1297
        for(i=0; i < s->params->num_global_channels; i++)
1298
           {
1299
            if(s->global_channel[i] / s->params->num_routers == dest_group_id)
1300 1301 1302 1303
                dest_lp=s->global_channel[i];
          }
      }
   }
1304
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->anno, 0, dest_lp,
1305
          0, &router_dest_id);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
  return router_dest_id;
}
/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
1317 1318 1319
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
          &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
          &mapping_offset);
1320
  int num_lps = codes_mapping_get_lp_count(lp_group_name,1,LP_CONFIG_NM,s->anno,0);
1321
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1322 1323 1324

  if(next_stop == msg->dest_terminal_id)
   {
1325 1326
      output_port = s->params->num_routers + s->params->num_global_channels +
          ( terminal_id % s->params->num_cn);
1327 1328 1329
    }
    else
    {
1330 1331
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id,
             NULL, &mapping_type_id, NULL, &mapping_rep_id, &mapping_offset);
1332
     int local_router_id = mapping_rep_id + mapping_offset;
1333
     int intm_grp_id = local_router_id / s->params->num_routers;
1334 1335 1336

     if(intm_grp_id != s->group_id)
      {
1337
        for(i=0; i < s->params->num_global_channels; i++)
1338
         {
1339
           if(s->global_channel[i] == local_router_id)
1340
             output_port = s->params->num_routers + i;
1341 1342 1343 1344
          }
      }
      else
       {
1345
        output_port = local_router_id % s->params->num_routers;
1346
       }
1347
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1348 1349 1350 1351 1352
    }
    return output_port;
}


1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/* UGAL (first condition is from booksim), output port equality check comes from Dally dragonfly'09*/
static int do_adaptive_routing( router_state * s,
				 tw_bf * bf,
				 terminal_message * msg,
				 tw_lp * lp,
				 int dest_router_id,
				 int intm_id)
{
    int next_stop;
    int minimal_out_port = -1, nonmin_out_port = -1;
     // decide which routing to take
    // get the queue occupancy of both the minimal and non-minimal output ports 
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL, dest_router_id, -1);
1366
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
1367
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL, dest_router_id, intm_id);
1368 1369 1370
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
1371 1372
    //int nonmin_vc = s->vc_occupancy[nonmin_out_port * s->params->num_vcs + 2];
    //int min_vc = s->vc_occupancy[minimal_out_port * s->params->num_vcs + 1];
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    // Now get the expected number of hops to be traversed for both routes 
    int dest_group_id = dest_router_id / s->params->num_routers;
    int num_min_hops = get_num_hops(s->router_id, dest_router_id, s->params->num_routers, 0);

    int intm_router_id = getRouterFromGroupID(intm_id, s->router_id / s->params->num_routers, s->params->num_routers);

    //printf("\n source %d Intm router id is %d dest router id %d ", s->router_id, intm_router_id, dest_router_id);
    int num_nonmin_hops = get_num_hops(s->router_id, intm_router_id, s->params->num_routers, 1) + get_num_hops(intm_router_id, dest_router_id, s->params->num_routers, 1);

    assert(num_nonmin_hops <= 6);

1385
    // Adaptive routing condition from the dragonfly paper Page 83
1386
   // modified according to booksim adaptive routing condition
1387 1388
 /*  if((min_vc <= (nonmin_vc * 2 + adaptive_threshold) && minimal_out_port == nonmin_out_port)
               || (min_port_count <= (nonmin_port_count * 2 + adaptive_threshold) && minimal_out_port != nonmin_out_port))*/
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

   /* average the local queues of the router */
   unsigned int q_avg = 0;
   int i;
   for( i = 0; i < s->params->radix; i++)
    {
	if( i != minimal_out_port)
		q_avg += s->vc_occupancy[i]; 
   }
   q_avg = q_avg / (s->params->radix - 1);
   if(num_min_hops * min_port_count <= (num_nonmin_hops * (q_avg + 1)))
1400
     {
1401
	   msg->path_type = MINIMAL;
1402 1403
           next_stop = minimal_next_stop;
           msg->intm_group_id = -1;
1404

1405 1406 1407 1408 1409
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
1410
	   msg->path_type = NON_MINIMAL;
1411 1412 1413 1414 1415
           next_stop = nonmin_next_stop;
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

         }
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
   return next_stop;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
/*
   if(lp->gid == TRACK)
   {
	printf("\n Router %d ", s->router_id);
	int i;
	for (i = 0; i < s->params->radix; i++)
		printf("\n vc occupancy %d ", s->vc_occupancy[i]);
   }
*/
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
   float bandwidth = s->params->local_bandwidth;
   bf->c3 = 0;

   uint64_t num_chunks = msg->packet_size/s->params->chunk_size;
   if(msg->packet_size % s->params->chunk_size)
       num_chunks++;
    
   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name,
           &mapping_grp_id, NULL, &mapping_type_id, NULL, &mapping_rep_id,
           &mapping_offset); 
   int num_lps = codes_mapping_get_lp_count(lp_group_name, 1, LP_CONFIG_NM,
           s->anno, 0);
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / s->params->num_routers;
   int intm_id = tw_rand_integer(lp->rng, 0, s->params->num_groups - 1);  
   int local_grp_id = s->router_id / s->params->num_routers;
   if(intm_id == local_grp_id) 
	intm_id = (local_grp_id + 2) % s->params->num_groups;

/* progressive adaptive routing makes a check at every node/router at the source group to sense congestion. Once it does and decides on taking non-minimal path, it does not check any longer. */
1458
//   printf("\n local grp id %d origin router id %d ", local_grp_id, msg->origin_router_id / s->params->num_routers);
1459 1460 1461
   if(routing == PROG_ADAPTIVE
	 && msg->path_type != NON_MINIMAL
	 && local_grp_id == ( msg->origin_router_id / s->params->num_routers))
1462 1463 1464
	{
		next_stop = do_adaptive_routing(s, bf, msg, lp, dest_router_id, intm_id);	
	}
1465