dragonfly.c 54.1 KB
Newer Older
Philip Carns's avatar
Philip Carns committed
1 2 3 4 5 6
/*
 * Copyright (C) 2013 University of Chicago.
 * See COPYRIGHT notice in top-level directory.
 *
 */

7 8 9 10
// Local router ID: 0 --- total_router-1
// Router LP ID 
// Terminal LP ID

11 12 13 14 15 16
#include <ross.h>

#include "codes/codes_mapping.h"
#include "codes/codes.h"
#include "codes/model-net.h"
#include "codes/model-net-method.h"
17 18
#include "codes/model-net-lp.h"
#include "codes/net/dragonfly.h"
19 20 21 22 23

#define CHUNK_SIZE 32.0
#define CREDIT_SIZE 8
#define MEAN_PROCESS 1.0

24 25 26
/* collective specific parameters */
#define TREE_DEGREE 4
#define LEVEL_DELAY 1000
27
#define DRAGONFLY_COLLECTIVE_DEBUG 0
28 29 30 31
#define NUM_COLLECTIVES  1
#define COLLECTIVE_COMPUTATION_DELAY 5700
#define DRAGONFLY_FAN_OUT_DELAY 20.0

32 33 34 35 36
// debugging parameters
#define TRACK 235221
#define PRINT_ROUTER_TABLE 1
#define DEBUG 1

37 38 39
#define LP_CONFIG_NM (model_net_lp_config_names[DRAGONFLY])
#define LP_METHOD_NM (model_net_method_names[DRAGONFLY])

40 41 42 43 44 45 46 47 48 49 50 51
// arrival rate
static double MEAN_INTERVAL=200.0;
/* radix of a dragonfly router = number of global channels + number of
 * compute node channels + number of local router channels */
static int radix=0;

/* configurable parameters, coming from the codes config file*/
/* number of virtual channels, number of routers comes from the
 * config file, number of compute nodes, global channels and group
 * is calculated from these configurable parameters */
static int num_vcs, num_routers, num_cn, num_global_channels, num_groups;

52 53 54 55 56
/* adaptive threshold is to bias the adaptive routing */
static int total_routers, adaptive_threshold = 10;

/* minimal and non-minimal packet counts for adaptive routing*/
int minimal_count, nonmin_count;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* configurable parameters, global channel, local channel and 
 * compute node bandwidth */
static double global_bandwidth, local_bandwidth, cn_bandwidth;

/*configurable parameters, global virtual channel size, local
 * virtual channel size and compute node channel size */
static int global_vc_size, local_vc_size, cn_vc_size;

/* global variables for codes mapping */
static char lp_group_name[MAX_NAME_LENGTH], lp_type_name[MAX_NAME_LENGTH];
static int mapping_grp_id, mapping_type_id, mapping_rep_id, mapping_offset;

/* handles terminal and router events like packet generate/send/receive/buffer */
typedef enum event_t event_t;

typedef struct terminal_state terminal_state;
typedef struct router_state router_state;

/* dragonfly compute node data structure */
struct terminal_state
{
   unsigned long long packet_counter;

   // Dragonfly specific parameters
   unsigned int router_id;
   unsigned int terminal_id;

   // Each terminal will have an input and output channel with the router
   int* vc_occupancy; // NUM_VC
   int* output_vc_state;
   tw_stime terminal_available_time;
   tw_stime next_credit_available_time;
// Terminal generate, sends and arrival T_SEND, T_ARRIVAL, T_GENERATE
// Router-Router Intra-group sends and receives RR_LSEND, RR_LARRIVE
// Router-Router Inter-group sends and receives RR_GSEND, RR_GARRIVE
   struct mn_stats dragonfly_stats_array[CATEGORY_MAX];
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  /* collective init time */
  tw_stime collective_init_time;

  /* node ID in the tree */ 
   tw_lpid node_id;

   /* messages sent & received in collectives may get interchanged several times so we have to save the 
     origin server information in the node's state */
   tw_lpid origin_svr; 
  
  /* parent node ID of the current node */
   tw_lpid parent_node_id;
   /* array of children to be allocated in terminal_init*/
   tw_lpid* children;

   /* children of a node can be less than or equal to the tree degree */
   int num_children;

   short is_root;
   short is_leaf;

   /* to maintain a count of child nodes that have fanned in at the parent during the collective
      fan-in phase*/
   int num_fan_nodes;
118
};
119

120 121 122 123 124 125 126 127 128
/* terminal event type (1-4) */
enum event_t
{
  T_GENERATE=1,
  T_ARRIVE,
  T_SEND,
  T_BUFFER,
  R_SEND,
  R_ARRIVE,
129 130 131 132
  R_BUFFER,
  D_COLLECTIVE_INIT,
  D_COLLECTIVE_FAN_IN,
  D_COLLECTIVE_FAN_OUT
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
};
/* status of a virtual channel can be idle, active, allocated or wait for credit */
enum vc_status
{
   VC_IDLE,
   VC_ACTIVE,
   VC_ALLOC,
   VC_CREDIT
};

/* whether the last hop of a packet was global, local or a terminal */
enum last_hop
{
   GLOBAL,
   LOCAL,
   TERMINAL
};

/* three forms of routing algorithms available, adaptive routing is not
 * accurate and fully functional in the current version as the formulas
 * for detecting load on global channels are not very accurate */
enum ROUTING_ALGO
{
   MINIMAL,
   NON_MINIMAL,
   ADAPTIVE
};

struct router_state
{
   unsigned int router_id;
   unsigned int group_id;
  
   int* global_channel; 
   tw_stime* next_output_available_time;
   tw_stime* next_credit_available_time;
   int* vc_occupancy;
   int* output_vc_state;
};

static short routing = MINIMAL;

static int head_delay;
static uint64_t num_chunks;

static tw_stime         dragonfly_total_time = 0;
static tw_stime         dragonfly_max_latency = 0;
180
static tw_stime         max_collective = 0;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196


static long long       total_hops = 0;
static long long       N_finished_packets = 0;

/* returns the dragonfly router lp type for lp registration */
static const tw_lptype* dragonfly_get_router_lp_type(void);

/* returns the dragonfly message size */
static int dragonfly_get_msg_sz(void)
{
	   return sizeof(terminal_message);
}


/* setup the dragonfly model, initialize global parameters */
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void dragonfly_setup(const void* net_params)
{
   dragonfly_param* d_param = (dragonfly_param*)net_params;

   num_vcs = d_param->num_vcs;
   num_routers = d_param->num_routers;
   num_cn = num_routers/2;
   num_global_channels = num_routers/2;
   num_groups = num_routers * num_cn + 1; 

   global_bandwidth = d_param->global_bandwidth;
   local_bandwidth = d_param->local_bandwidth;
   cn_bandwidth = d_param->cn_bandwidth;

   global_vc_size = d_param->global_vc_size;
   local_vc_size = d_param->local_vc_size;
   cn_vc_size = d_param->cn_vc_size;
   routing = d_param->routing;

216
   radix = num_vcs * (num_cn + num_global_channels + num_routers);
217 218 219 220 221 222 223 224 225 226 227
   total_routers = num_groups * num_routers;
   lp_type_register("dragonfly_router", dragonfly_get_router_lp_type());
   return;
}

/* report dragonfly statistics like average and maximum packet latency, average number of hops traversed */
static void dragonfly_report_stats()
{
/* TODO: Add dragonfly packet average, maximum latency and average number of hops traversed */
   long long avg_hops, total_finished_packets;
   tw_stime avg_time, max_time;
228
   int total_minimal_packets, total_nonmin_packets;
229 230 231 232 233

   MPI_Reduce( &total_hops, &avg_hops, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &N_finished_packets, &total_finished_packets, 1, MPI_LONG_LONG, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_total_time, &avg_time, 1,MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
   MPI_Reduce( &dragonfly_max_latency, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
234 235 236 237 238
   if(routing == ADAPTIVE)
    {
	MPI_Reduce(&minimal_count, &total_minimal_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 	MPI_Reduce(&nonmin_count, &total_nonmin_packets, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
    }
239 240 241 242 243

   /* print statistics */
   if(!g_tw_mynode)
   {
      printf(" Average number of hops traversed %f average message latency %lf us maximum message latency %lf us \n", (float)avg_hops/total_finished_packets, avg_time/(total_finished_packets*1000), max_time/1000);
244 245 246 247
     if(routing == ADAPTIVE)
              printf("\n ADAPTIVE ROUTING STATS: %d packets routed minimally %d packets routed non-minimally ", total_minimal_packets, total_nonmin_packets);
 
  }
248 249
   return;
}
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void dragonfly_collective_init(terminal_state * s,
           		   tw_lp * lp)
{
    codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
    int num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);
    int num_reps = codes_mapping_get_group_reps(lp_group_name);
    s->node_id = (mapping_rep_id * num_lps) + mapping_offset;

    int i;
   /* handle collective operations by forming a tree of all the LPs */
   /* special condition for root of the tree */
   if( s->node_id == 0)
    {
        s->parent_node_id = -1;
        s->is_root = 1;
   }
   else
   {
       s->parent_node_id = (s->node_id - ((s->node_id - 1) % TREE_DEGREE)) / TREE_DEGREE;
       s->is_root = 0;
   }
   s->children = (tw_lpid*)malloc(TREE_DEGREE * sizeof(tw_lpid));

   /* set the isleaf to zero by default */
   s->is_leaf = 1;
   s->num_children = 0;

   /* calculate the children of the current node. If its a leaf, no need to set children,
      only set isleaf and break the loop*/

   for( i = 0; i < TREE_DEGREE; i++ )
    {
        tw_lpid next_child = (TREE_DEGREE * s->node_id) + i + 1;
        if(next_child < (num_lps * num_reps))
        {
            s->num_children++;
            s->is_leaf = 0;
            s->children[i] = next_child;
        }
        else
           s->children[i] = -1;
    }

#if DRAGONFLY_COLLECTIVE_DEBUG == 1
   printf("\n LP %ld parent node id ", s->node_id);

   for( i = 0; i < TREE_DEGREE; i++ )
        printf(" child node ID %ld ", s->children[i]);
   printf("\n");

   if(s->is_leaf)
        printf("\n LP %ld is leaf ", s->node_id);
#endif
}

306
/* dragonfly packet event , generates a dragonfly packet on the compute node */
307
static tw_stime dragonfly_packet_event(char* category, tw_lpid final_dest_lp, uint64_t packet_size, int is_pull, uint64_t pull_size, tw_stime offset, int remote_event_size, const void* remote_event, int self_event_size, const void* self_event, tw_lpid src_lp, tw_lp *sender, int is_last_pckt)
308 309 310 311
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
312
    tw_lpid dest_nic_id;
313
    char* tmp_ptr;
314
#if 0
315 316 317 318
    char lp_type_name[MAX_NAME_LENGTH], lp_group_name[MAX_NAME_LENGTH];

    int mapping_grp_id, mapping_rep_id, mapping_type_id, mapping_offset;
    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
319 320
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, mapping_rep_id, mapping_offset, &local_nic_id);
#endif
321 322

    codes_mapping_get_lp_info(final_dest_lp, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
323
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, mapping_rep_id, mapping_offset, &dest_nic_id);
324
  
325
    xfer_to_nic_time = g_tw_lookahead + codes_local_latency(sender); /* Throws an error of found last KP time > current event time otherwise when LPs of one type are placed together*/
326 327 328 329
    //e_new = tw_event_new(local_nic_id, xfer_to_nic_time+offset, sender);
    //msg = tw_event_data(e_new);
    e_new = model_net_method_event_new(sender->gid, xfer_to_nic_time+offset,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);
330 331 332
    strcpy(msg->category, category);
    msg->final_dest_gid = final_dest_lp;
    msg->dest_terminal_id = dest_nic_id;
333
    msg->sender_lp=src_lp;
334 335 336 337
    msg->packet_size = packet_size;
    msg->remote_event_size_bytes = 0;
    msg->local_event_size_bytes = 0;
    msg->type = T_GENERATE;
338 339
    msg->is_pull = is_pull;
    msg->pull_size = pull_size;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

    if(is_last_pckt) /* Its the last packet so pass in remote and local event information*/
      {
	if(remote_event_size > 0)
	 {
		msg->remote_event_size_bytes = remote_event_size;
		memcpy(tmp_ptr, remote_event, remote_event_size);
		tmp_ptr += remote_event_size;
	}
	if(self_event_size > 0)
	{
		msg->local_event_size_bytes = self_event_size;
		memcpy(tmp_ptr, self_event, self_event_size);
		tmp_ptr += self_event_size;
	}
     }
356
	   //printf("\n dragonfly remote event %d local event %d last packet %d %lf ", msg->remote_event_size_bytes, msg->local_event_size_bytes, is_last_pckt, xfer_to_nic_time);
357
    tw_event_send(e_new);
358
    return xfer_to_nic_time;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
}

/* dragonfly packet event reverse handler */
static void dragonfly_packet_event_rc(tw_lp *sender)
{
	  codes_local_latency_reverse(sender);
	    return;
}

/* given a group ID gid, find the router in the current group that is attached
 * to a router in the group gid */
tw_lpid getRouterFromGroupID(int gid, 
		    router_state * r)
{
  int group_begin = r->group_id * num_routers;
  int group_end = (r->group_id * num_routers) + num_routers-1;
  int offset = (gid * num_routers - group_begin) / num_routers;
  
  if((gid * num_routers) < group_begin)
    offset = (group_begin - gid * num_routers) / num_routers; // take absolute value
  
  int half_channel = num_global_channels / 2;
  int index = (offset - 1)/(half_channel * num_routers);
  
  offset=(offset - 1) % (half_channel * num_routers);

  // If the destination router is in the same group
  tw_lpid router_id;

  if(index % 2 != 0)
    router_id = group_end - (offset / half_channel); // start from the end
  else
    router_id = group_begin + (offset / half_channel);

  return router_id;
}	

/*When a packet is sent from the current router and a buffer slot becomes available, a credit is sent back to schedule another packet event*/
void router_credit_send(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_event * buf_e;
  tw_stime ts;
  terminal_message * buf_msg;

  int dest=0, credit_delay=0, type = R_BUFFER;
404
  int is_terminal = 0;
405 406 407 408 409 410 411 412

 // Notify sender terminal about available buffer space
  if(msg->last_hop == TERMINAL)
  {
   dest = msg->src_terminal_id;
   //determine the time in ns to transfer the credit
   credit_delay = (1 / cn_bandwidth) * CREDIT_SIZE;
   type = T_BUFFER;
413
   is_terminal = 1;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  }
   else if(msg->last_hop == GLOBAL)
   {
     dest = msg->intm_lp_id;
     credit_delay = (1 / global_bandwidth) * CREDIT_SIZE;
   }
    else if(msg->last_hop == LOCAL)
     {
        dest = msg->intm_lp_id;
     	credit_delay = (1/local_bandwidth) * CREDIT_SIZE;
     }
    else
      printf("\n Invalid message type");

   // Assume it takes 0.1 ns of serialization latency for processing the credits in the queue
    int output_port = msg->saved_vc / num_vcs;
    msg->saved_available_time = s->next_credit_available_time[output_port];
    s->next_credit_available_time[output_port] = max(tw_now(lp), s->next_credit_available_time[output_port]);
    ts = credit_delay + tw_rand_exponential(lp->rng, (double)credit_delay/1000);
	
    s->next_credit_available_time[output_port]+=ts;
435 436 437 438 439 440 441 442 443
    if (is_terminal){
        buf_e = model_net_method_event_new(dest, 
                s->next_credit_available_time[output_port] - tw_now(lp), lp,
                DRAGONFLY, (void**)&buf_msg, NULL);
    }
    else{
        buf_e = tw_event_new(dest, s->next_credit_available_time[output_port] - tw_now(lp) , lp);
        buf_msg = tw_event_data(buf_e);
    }
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    buf_msg->vc_index = msg->saved_vc;
    buf_msg->type=type;
    buf_msg->last_hop = msg->last_hop;
    buf_msg->packet_ID=msg->packet_ID;

    tw_event_send(buf_e);

    return;
}

/* generates packet at the current dragonfly compute node */
void packet_generate(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
460
  int i, total_event_size;
461 462 463
  num_chunks = msg->packet_size / CHUNK_SIZE;
  msg->packet_ID = lp->gid + g_tw_nlp * s->packet_counter + tw_rand_integer(lp->rng, 0, lp->gid + g_tw_nlp * s->packet_counter);
  msg->travel_start_time = tw_now(lp);
464
  msg->my_N_hop = 0;
465 466
  for(i = 0; i < num_chunks; i++)
  {
467 468
	  // Before
	  // msg->my_N_hop = 0; generating a packet, check if the input queue is available
469
        ts = g_tw_lookahead + 0.1 + tw_rand_exponential(lp->rng, MEAN_INTERVAL/200);
470 471 472 473 474 475 476 477 478 479
	int chan = -1, j;
	for(j = 0; j < num_vcs; j++)
	 {
	     if(s->vc_occupancy[j] < cn_vc_size * num_chunks)
	      {
	       chan=j;
	       break;
	      }
         }

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        // this is a terminal event, so use the method-event version
       //e = tw_event_new(lp->gid, i + ts, lp);
       //m = tw_event_data(e);
       //memcpy(m, msg, sizeof(terminal_message) + msg->remote_event_size_bytes + msg->local_event_size_bytes);
       void * m_data;
       e = model_net_method_event_new(lp->gid, i+ts, lp, DRAGONFLY,
               (void**)&m, &m_data);
       memcpy(m, msg, sizeof(terminal_message));
       void * m_data_src = model_net_method_get_edata(DRAGONFLY, msg);
       if (msg->remote_event_size_bytes){
            memcpy(m_data, m_data_src, msg->remote_event_size_bytes);
       }
       if (msg->local_event_size_bytes){ 
            memcpy((char*)m_data + msg->remote_event_size_bytes,
                    (char*)m_data_src + msg->remote_event_size_bytes,
                    msg->local_event_size_bytes);
       }
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
       m->intm_group_id = -1;
       m->saved_vc=0;
       m->chunk_id = i;
       
       if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
         printf("\n packet generated %lld at terminal %d chunk id %d ", msg->packet_ID, (int)lp->gid, i);
       
       m->output_chan = -1;
       if(chan != -1) // If the input queue is available
   	{
	    // Send the packet out
	     m->type = T_SEND;
 	     tw_event_send(e);
        }
      else
         {
	  printf("\n Exceeded queue size, exitting %d", s->vc_occupancy[0]);
	  MPI_Finalize();
	  exit(-1);
        } //else
  } // for
518 519
  total_event_size = model_net_get_msg_sz(DRAGONFLY) + 
      msg->remote_event_size_bytes + msg->local_event_size_bytes;
520 521 522 523 524 525 526
  mn_stats* stat;
  stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
  stat->send_count++;
  stat->send_bytes += msg->packet_size;
  stat->send_time += (1/cn_bandwidth) * msg->packet_size;
  if(stat->max_event_size < total_event_size)
	  stat->max_event_size = total_event_size;
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  return;
}

/* sends the packet from the current dragonfly compute node to the attached router */
void packet_send(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  tw_stime ts;
  tw_event *e;
  terminal_message *m;
  tw_lpid router_id;
  /* Route the packet to its source router */ 
   int vc=msg->saved_vc;

   //  Each packet is broken into chunks and then sent over the channel
   msg->saved_available_time = s->terminal_available_time;
   head_delay = (1/cn_bandwidth) * CHUNK_SIZE;
   ts = head_delay + tw_rand_exponential(lp->rng, (double)head_delay/200);
   s->terminal_available_time = max(s->terminal_available_time, tw_now(lp));
   s->terminal_available_time += ts;

547 548
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
   codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->router_id, 0, &router_id);
549
   // we are sending an event to the router, so no method_event here
550 551 552 553 554
   e = tw_event_new(router_id, s->terminal_available_time - tw_now(lp), lp);

   if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
     printf("\n terminal %d packet %lld chunk %d being sent to router %d router id %d ", (int)lp->gid, (long long)msg->packet_ID, msg->chunk_id, (int)router_id, s->router_id);
   m = tw_event_data(e);
555 556 557 558 559
   memcpy(m, msg, sizeof(terminal_message));
   if (msg->remote_event_size_bytes){
        memcpy(m+1, model_net_method_get_edata(DRAGONFLY, msg),
                msg->remote_event_size_bytes);
   }
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
   m->type = R_ARRIVE;
   m->src_terminal_id = lp->gid;
   m->saved_vc = vc;
   m->last_hop = TERMINAL;
   m->intm_group_id = -1;
   m->local_event_size_bytes = 0;
   tw_event_send(e);
//  Each chunk is 32B and the VC occupancy is in chunks to enable efficient flow control

   if(msg->chunk_id == num_chunks - 1) 
    {
      /* local completion message */
      if(msg->local_event_size_bytes > 0)
	 {
           tw_event* e_new;
	   terminal_message* m_new;
576 577 578
	   void* local_event = 
               (char*)model_net_method_get_edata(DRAGONFLY, msg) + 
               msg->remote_event_size_bytes;
579
	   ts = (1/cn_bandwidth) * msg->local_event_size_bytes;
580
	   e_new = tw_event_new(msg->sender_lp, ts, lp);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	   m_new = tw_event_data(e_new);
	   memcpy(m_new, local_event, msg->local_event_size_bytes);
	   tw_event_send(e_new);
	}
    }
   
   s->packet_counter++;
   s->vc_occupancy[vc]++;

   if(s->vc_occupancy[vc] >= (cn_vc_size * num_chunks))
      s->output_vc_state[vc] = VC_CREDIT;
   return;
}

/* packet arrives at the destination terminal */
void packet_arrive(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
#if DEBUG
if( msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
    {
	printf( "(%lf) [Terminal %d] packet %lld has arrived  \n",
              tw_now(lp), (int)lp->gid, msg->packet_ID);

	printf("travel start time is %f\n",
                msg->travel_start_time);

	printf("My hop now is %d\n",msg->my_N_hop);
    }
#endif

  // Packet arrives and accumulate # queued
  // Find a queue with an empty buffer slot
   tw_event * e, * buf_e;
   terminal_message * m, * buf_msg;
   tw_stime ts;
   bf->c3 = 0;
   bf->c2 = 0;

   msg->my_N_hop++;
  if(msg->chunk_id == num_chunks-1)
  {
	 bf->c2 = 1;
623 624 625 626 627
	 mn_stats* stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
	 stat->recv_count++;
	 stat->recv_bytes += msg->packet_size;
	 stat->recv_time += tw_now(lp) - msg->travel_start_time;

628 629 630 631 632 633 634 635 636 637 638 639 640
	 N_finished_packets++;
	 dragonfly_total_time += tw_now( lp ) - msg->travel_start_time;
	 total_hops += msg->my_N_hop;

	 if (dragonfly_max_latency < tw_now( lp ) - msg->travel_start_time) 
	 {
		bf->c3 = 1;
		msg->saved_available_time = dragonfly_max_latency;
		dragonfly_max_latency=tw_now( lp ) - msg->travel_start_time;
	 }
	// Trigger an event on receiving server
	if(msg->remote_event_size_bytes)
	{
641
            void * tmp_ptr = model_net_method_get_edata(DRAGONFLY, msg);
642 643
            ts = (1/cn_bandwidth) * msg->remote_event_size_bytes;
            if (msg->is_pull){
644
                int net_id = model_net_get_id(LP_METHOD_NM);
645 646 647 648 649 650 651 652 653 654
                model_net_event(net_id, msg->category, msg->sender_lp,
                        msg->pull_size, ts, msg->remote_event_size_bytes,
                        tmp_ptr, 0, NULL, lp);
            }
            else{
                e = tw_event_new(msg->final_dest_gid, ts, lp);
                m = tw_event_data(e);
                memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
                tw_event_send(e); 
            }
655 656 657 658 659 660
	}
  }

  int credit_delay = (1 / cn_bandwidth) * CREDIT_SIZE;
  ts = credit_delay + tw_rand_exponential(lp->rng, credit_delay/1000);
  
661
  msg->saved_credit_time = s->next_credit_available_time;
662 663 664 665
  s->next_credit_available_time = max(s->next_credit_available_time, tw_now(lp));
  s->next_credit_available_time += ts;

  tw_lpid router_dest_id;
666 667
  codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", s->router_id, 0, &router_dest_id);
668
  // no method_event here - message going to router
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  buf_e = tw_event_new(router_dest_id, s->next_credit_available_time - tw_now(lp), lp);
  buf_msg = tw_event_data(buf_e);
  buf_msg->vc_index = msg->saved_vc;
  buf_msg->type=R_BUFFER;
  buf_msg->packet_ID=msg->packet_ID;
  buf_msg->last_hop = TERMINAL;
  tw_event_send(buf_e);

  return;
}

/* initialize a dragonfly compute node terminal */
void 
terminal_init( terminal_state * s, 
	       tw_lp * lp )
{
    int i;
    // Assign the global router ID
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
688
   int num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);
689 690

   s->terminal_id = (mapping_rep_id * num_lps) + mapping_offset;  
691 692 693 694 695 696 697 698 699 700 701 702
   s->router_id=(int)s->terminal_id / num_routers;
   s->terminal_available_time = 0.0;
   s->packet_counter = 0;

   s->vc_occupancy = (int*)malloc(num_vcs * sizeof(int));
   s->output_vc_state = (int*)malloc(num_vcs * sizeof(int));

   for( i = 0; i < num_vcs; i++ )
    {
      s->vc_occupancy[i]=0;
      s->output_vc_state[i]=VC_IDLE;
    }
703
   dragonfly_collective_init(s, lp);
704 705 706
   return;
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/* collective operation for the torus network */
void dragonfly_collective(char* category, int message_size, int remote_event_size, const void* remote_event, tw_lp* sender)
{
    tw_event * e_new;
    tw_stime xfer_to_nic_time;
    terminal_message * msg;
    tw_lpid local_nic_id;
    char* tmp_ptr;

    codes_mapping_get_lp_info(sender->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
    codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, mapping_rep_id, mapping_offset, &local_nic_id);

    xfer_to_nic_time = g_tw_lookahead + codes_local_latency(sender);
    e_new = model_net_method_event_new(local_nic_id, xfer_to_nic_time,
            sender, DRAGONFLY, (void**)&msg, (void**)&tmp_ptr);

    msg->remote_event_size_bytes = message_size;
    strcpy(msg->category, category);
    msg->sender_svr=sender->gid;
    msg->type = D_COLLECTIVE_INIT;

    tmp_ptr = (char*)msg;
    tmp_ptr += dragonfly_get_msg_sz();
    if(remote_event_size > 0)
     {
            msg->remote_event_size_bytes = remote_event_size;
            memcpy(tmp_ptr, remote_event, remote_event_size);
            tmp_ptr += remote_event_size;
     }

    tw_event_send(e_new);
    return;
}

/* reverse for collective operation of the dragonfly network */
void dragonfly_collective_rc(int message_size, tw_lp* sender)
{
     codes_local_latency_reverse(sender);
     return;
}

static void send_remote_event(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
    // Trigger an event on receiving server
    if(msg->remote_event_size_bytes)
     {
            tw_event* e;
            tw_stime ts;
            terminal_message * m;
            ts = (1/cn_bandwidth) * msg->remote_event_size_bytes;
            e = codes_event_new(s->origin_svr, ts, lp);
            m = tw_event_data(e);
            char* tmp_ptr = (char*)msg;
            tmp_ptr += dragonfly_get_msg_sz();
            memcpy(m, tmp_ptr, msg->remote_event_size_bytes);
            tw_event_send(e);
     }
}

static void node_collective_init(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        tw_event * e_new;
        tw_lpid parent_nic_id;
        tw_stime xfer_to_nic_time;
        terminal_message * msg_new;
        int num_lps;

        msg->saved_collective_init_time = s->collective_init_time;
        s->collective_init_time = tw_now(lp);
	s->origin_svr = msg->sender_svr;
	
        if(s->is_leaf)
        {
            //printf("\n LP %ld sending message to parent %ld ", s->node_id, s->parent_node_id);
            /* get the global LP ID of the parent node */
            codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
            num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->parent_node_id/num_lps , (s->parent_node_id % num_lps), &parent_nic_id);

           /* send a message to the parent that the LP has entered the collective operation */
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
	    void* m_data;
	    e_new = model_net_method_event_new(parent_nic_id, xfer_to_nic_time,
            	lp, DRAGONFLY, (void**)&msg_new, (void**)&m_data);
	    	
            memcpy(msg_new, msg, sizeof(terminal_message));
	    if (msg->remote_event_size_bytes){
        	memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
                	msg->remote_event_size_bytes);
      	    }
	    
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            tw_event_send(e_new);
        }
        return;
}

static void node_collective_fan_in(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        s->num_fan_nodes++;

        codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
        int num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);

        tw_event* e_new;
        terminal_message * msg_new;
        tw_stime xfer_to_nic_time;

        bf->c1 = 0;
        bf->c2 = 0;

        /* if the number of fanned in nodes have completed at the current node then signal the parent */
        if((s->num_fan_nodes == s->num_children) && !s->is_root)
        {
            bf->c1 = 1;
            msg->saved_fan_nodes = s->num_fan_nodes-1;
            s->num_fan_nodes = 0;
            tw_lpid parent_nic_id;
            xfer_to_nic_time = g_tw_lookahead + LEVEL_DELAY;

            /* get the global LP ID of the parent node */
            codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->parent_node_id/num_lps , (s->parent_node_id % num_lps), &parent_nic_id);

           /* send a message to the parent that the LP has entered the collective operation */
            //e_new = codes_event_new(parent_nic_id, xfer_to_nic_time, lp);
            //msg_new = tw_event_data(e_new);
	    void * m_data;
      	    e_new = model_net_method_event_new(parent_nic_id,
              xfer_to_nic_time,
              lp, DRAGONFLY, (void**)&msg_new, &m_data);
	    
            memcpy(msg_new, msg, sizeof(terminal_message));
            msg_new->type = D_COLLECTIVE_FAN_IN;
            msg_new->sender_node = s->node_id;

            if (msg->remote_event_size_bytes){
	        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
        	        msg->remote_event_size_bytes);
      	   }
	    
            tw_event_send(e_new);
      }

      /* root node starts off with the fan-out phase */
      if(s->is_root && (s->num_fan_nodes == s->num_children))
      {
           bf->c2 = 1;
           msg->saved_fan_nodes = s->num_fan_nodes-1;
           s->num_fan_nodes = 0;
           send_remote_event(s, bf, msg, lp);

           for( i = 0; i < s->num_children; i++ )
           {
                tw_lpid child_nic_id;
                /* Do some computation and fan out immediate child nodes from the collective */
                xfer_to_nic_time = g_tw_lookahead + COLLECTIVE_COMPUTATION_DELAY + LEVEL_DELAY + tw_rand_exponential(lp->rng, (double)LEVEL_DELAY/50);

                /* get global LP ID of the child node */
                codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->children[i]/num_lps , (s->children[i] % num_lps), &child_nic_id);
                //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);

                //msg_new = tw_event_data(e_new);
                void * m_data;
	        e_new = model_net_method_event_new(child_nic_id,
                xfer_to_nic_time,
		lp, DRAGONFLY, (void**)&msg_new, &m_data);

		memcpy(msg_new, msg, sizeof(terminal_message));
	        if (msg->remote_event_size_bytes){
	                memcpy(m_data, model_net_method_get_edata(TORUS, msg),
        	               msg->remote_event_size_bytes);
      		}
		
                msg_new->type = D_COLLECTIVE_FAN_OUT;
                msg_new->sender_node = s->node_id;

                tw_event_send(e_new);
           }
      }
}

static void node_collective_fan_out(terminal_state * s,
                        tw_bf * bf,
                        terminal_message * msg,
                        tw_lp * lp)
{
        int i;
        int num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);
        bf->c1 = 0;
        bf->c2 = 0;

        send_remote_event(s, bf, msg, lp);

        if(!s->is_leaf)
        {
            bf->c1 = 1;
            tw_event* e_new;
            nodes_message * msg_new;
            tw_stime xfer_to_nic_time;

           for( i = 0; i < s->num_children; i++ )
           {
                xfer_to_nic_time = g_tw_lookahead + DRAGONFLY_FAN_OUT_DELAY + tw_rand_exponential(lp->rng, (double)DRAGONFLY_FAN_OUT_DELAY/10);

                if(s->children[i] > 0)
                {
                        tw_lpid child_nic_id;

                        /* get global LP ID of the child node */
                        codes_mapping_get_lp_id(lp_group_name, LP_CONFIG_NM, s->children[i]/num_lps , (s->children[i] % num_lps), &child_nic_id);
                        //e_new = codes_event_new(child_nic_id, xfer_to_nic_time, lp);
                        //msg_new = tw_event_data(e_new);
                        //memcpy(msg_new, msg, sizeof(nodes_message) + msg->remote_event_size_bytes);
			void* m_data;
			e_new = model_net_method_event_new(child_nic_id,
							xfer_to_nic_time,
					                lp, DRAGONFLY, (void**)&msg_new, &m_data);
		        memcpy(msg_new, msg, sizeof(nodes_message));
		        if (msg->remote_event_size_bytes){
			        memcpy(m_data, model_net_method_get_edata(DRAGONFLY, msg),
			                msg->remote_event_size_bytes);
      			}


                        msg_new->type = D_COLLECTIVE_FAN_OUT;
                        msg_new->sender_node = s->node_id;
                        tw_event_send(e_new);
                }
           }
         }
	//printf("\n Fan out phase completed %ld ", lp->gid);
        if(max_collective < tw_now(lp) - s->collective_init_time )
          {
              bf->c2 = 1;
              max_collective = tw_now(lp) - s->collective_init_time;
          }
}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/* update the compute node-router channel buffer */
void 
terminal_buf_update(terminal_state * s, 
		    tw_bf * bf, 
		    terminal_message * msg, 
		    tw_lp * lp)
{
  // Update the buffer space associated with this router LP 
    int msg_indx = msg->vc_index;
    
    s->vc_occupancy[msg_indx]--;
    s->output_vc_state[msg_indx] = VC_IDLE;

    return;
}

void 
terminal_event( terminal_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp )
{
  *(int *)bf = (int)0;
  switch(msg->type)
    {
    case T_GENERATE:
       packet_generate(s,bf,msg,lp);
    break;
    
    case T_ARRIVE:
        packet_arrive(s,bf,msg,lp);
    break;
    
    case T_SEND:
      packet_send(s,bf,msg,lp);
    break;
    
    case T_BUFFER:
       terminal_buf_update(s, bf, msg, lp);
     break;
997 998 999 1000
    
    case D_COLLECTIVE_INIT:
      node_collective_init(s, bf, msg, lp);
    break;
1001

1002 1003 1004 1005 1006 1007 1008 1009
    case D_COLLECTIVE_FAN_IN:
      node_collective_fan_in(s, bf, msg, lp);
    break;

    case D_COLLECTIVE_FAN_OUT:
      node_collective_fan_out(s, bf, msg, lp);
    break;
    
1010 1011 1012 1013 1014 1015
    default:
       printf("\n LP %d Terminal message type not supported %d ", (int)lp->gid, msg->type);
    }
}

void 
1016
dragonfly_terminal_final( terminal_state * s, 
1017 1018
      tw_lp * lp )
{
1019
	model_net_print_stats(lp->gid, s->dragonfly_stats_array);
1020 1021
}

1022 1023 1024 1025 1026
void dragonfly_router_final(router_state * s,
		tw_lp * lp)
{
   free(s->global_channel);
}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/* get the next stop for the current packet
 * determines if it is a router within a group, a router in another group
 * or the destination terminal */
tw_lpid 
get_next_stop(router_state * s, 
		      tw_bf * bf, 
		      terminal_message * msg, 
		      tw_lp * lp, 
		      int path)
{
   int dest_lp;
1038
   tw_lpid router_dest_id = -1;
1039 1040 1041 1042
   int i;
   int dest_group_id;

   codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset); 
1043
   int num_lps = codes_mapping_get_lp_count(lp_group_name, LP_CONFIG_NM);
1044
   int dest_router_id = (mapping_offset + (mapping_rep_id * num_lps)) / num_routers;
1045 1046 1047 1048 1049 1050
   
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
   int local_router_id = (mapping_offset + mapping_rep_id);

   bf->c2 = 0;

1051
  /* If the packet has arrived at the destination router */
1052 1053 1054 1055 1056 1057
   if(dest_router_id == local_router_id)
    {
        dest_lp = msg->dest_terminal_id;

        return dest_lp;
    }
1058
   /* Generate inter-mediate destination for non-minimal routing (selecting a random group) */
1059 1060 1061 1062 1063 1064 1065 1066 1067
   if(msg->last_hop == TERMINAL && path == NON_MINIMAL)
    {
      if(dest_router_id / num_routers != s->group_id)
         {
            bf->c2 = 1;
            int intm_grp_id = tw_rand_integer(lp->rng, 0, num_groups-1);
            msg->intm_group_id = intm_grp_id;
          }    
    }
1068
  /* It means that the packet has arrived at the inter-mediate group for non-minimal routing. Reset the group now. */
1069 1070 1071 1072
   if(msg->intm_group_id == s->group_id)
   {  
           msg->intm_group_id = -1;//no inter-mediate group
   } 
1073
  /* Intermediate group ID is set. Divert the packet to an intermediate group. */
1074 1075 1076 1077
  if(msg->intm_group_id >= 0)
   {
      dest_group_id = msg->intm_group_id;
   }
1078
  else /* direct the packet to the destination group */
1079 1080 1081 1082
   {
     dest_group_id = dest_router_id / num_routers;
   }
  
1083
  /* It means the packet has arrived at the destination group. Now divert it to the destination router. */
1084 1085 1086 1087 1088 1089
  if(s->group_id == dest_group_id)
   {
     dest_lp = dest_router_id;
   }
   else
   {
1090
      /* Packet is at the source or intermediate group. Find a router that has a path to the destination group. */
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
      dest_lp=getRouterFromGroupID(dest_group_id,s);
  
      if(dest_lp == local_router_id)
      {
        for(i=0; i < num_global_channels; i++)
           {
            if(s->global_channel[i] / num_routers == dest_group_id)
                dest_lp=s->global_channel[i];
          }
      }
   }
1102
  codes_mapping_get_lp_id(lp_group_name, "dragonfly_router", dest_lp, 0, &router_dest_id);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
  return router_dest_id;
}

/* gets the output port corresponding to the next stop of the message */
int 
get_output_port( router_state * s, 
		tw_bf * bf, 
		terminal_message * msg, 
		tw_lp * lp, 
		int next_stop )
{
  int output_port = -1, i, terminal_id;
  codes_mapping_get_lp_info(msg->dest_terminal_id, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
1116
  int num_lps = codes_mapping_get_lp_count(lp_group_name,LP_CONFIG_NM);
1117
  terminal_id = (mapping_rep_id * num_lps) + mapping_offset;
1118 1119 1120 1121

  if(next_stop == msg->dest_terminal_id)
   {
      output_port = num_routers + num_global_channels + ( terminal_id % num_cn);
1122 1123
      //if(output_port > 6)
	//      printf("\n incorrect output port %d terminal id %d ", output_port, terminal_id);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    }
    else
    {
     codes_mapping_get_lp_info(next_stop, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
     int local_router_id = mapping_rep_id + mapping_offset;
     int intm_grp_id = local_router_id / num_routers;

     if(intm_grp_id != s->group_id)
      {
        for(i=0; i < num_global_channels; i++)
         {
1135
           if(s->global_channel[i] == local_router_id)
1136 1137 1138 1139 1140 1141 1142
             output_port = num_routers + i;
          }
      }
      else
       {
        output_port = local_router_id % num_routers;
       }
1143
//	      printf("\n output port not found %d next stop %d local router id %d group id %d intm grp id %d %d", output_port, next_stop, local_router_id, s->group_id, intm_grp_id, local_router_id%num_routers);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    }
    return output_port;
}

/* routes the current packet to the next stop */
void 
router_packet_send( router_state * s, 
		    tw_bf * bf, 
		     terminal_message * msg, tw_lp * lp)
{
1154
   *(int *)bf = (int)0;
1155 1156 1157 1158 1159 1160 1161
   tw_stime ts;
   tw_event *e;
   terminal_message *m;

   int next_stop = -1, output_port = -1, output_chan = -1;
   float bandwidth = local_bandwidth;
   int path = routing;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
   int minimal_out_port = -1, nonmin_out_port = -1;
   bf->c1 = 0;
   bf->c4 = 0;  
 if(msg->last_hop == TERMINAL && routing == ADAPTIVE)
  {
  // decide which routing to take
    int minimal_next_stop=get_next_stop(s, bf, msg, lp, MINIMAL);
    minimal_out_port = get_output_port(s, bf, msg, lp, minimal_next_stop);
    int nonmin_next_stop = get_next_stop(s, bf, msg, lp, NON_MINIMAL);
    nonmin_out_port = get_output_port(s, bf, msg, lp, nonmin_next_stop);
    int nonmin_port_count = s->vc_occupancy[nonmin_out_port];
    int min_port_count = s->vc_occupancy[minimal_out_port];
    int nonmin_vc = s->vc_occupancy[nonmin_out_port * num_vcs + 2];
    int min_vc = s->vc_occupancy[minimal_out_port * num_vcs + 1];

    // Adaptive routing condition from the dragonfly paper Page 83
   if((min_vc <= (nonmin_vc * 2 + adaptive_threshold) && minimal_out_port == nonmin_out_port)
               || (min_port_count <= (nonmin_port_count * 2 + adaptive_threshold) && minimal_out_port != nonmin_out_port))
        {
           next_stop = minimal_next_stop;
           output_port = minimal_out_port;
           minimal_count++;
           msg->intm_group_id = -1;
           path = MINIMAL;
1186

1187
           bf->c1 = 1;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
           if(msg->packet_ID == TRACK)
              printf("\n (%lf) [Router %d] Packet %d routing minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);
        }
       else
         {
           next_stop = nonmin_next_stop;
           output_port = nonmin_out_port;
           nonmin_count++;
           path=NON_MINIMAL;
           if(msg->packet_ID == TRACK)
                printf("\n (%lf) [Router %d] Packet %d routing non-minimally ", tw_now(lp), (int)lp->gid, (int)msg->packet_ID);

          bf->c4 = 1;
         }
  }
  else
   {
   	next_stop = get_next_stop(s, bf, msg, lp, path);
   	output_port = get_output_port(s, bf, msg, lp, next_stop); 
   }
1209 1210
   output_chan = output_port * num_vcs;

1211
    // Even numbered channels for minimal routing
1212
   // Odd numbered channels for nonminimal routing
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
   // Separate the queue occupancy into minimal and non minimal virtual channels if the min & non min
   // paths start at the same output port
   /*if((routing == ADAPTIVE) && (minimal_out_port == nonmin_out_port))
   {
        if(path == MINIMAL)
          output_chan = output_chan + 1;
        else
          if(path == NON_MINIMAL)
            output_chan = output_chan + 2;
   }*/

1224 1225 1226
   int global=0;
   int buf_size = local_vc_size;

1227 1228
   assert(output_port != -1);
   assert(output_chan != -1);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
   // Allocate output Virtual Channel
  if(output_port >= num_routers && output_port < num_routers + num_global_channels)
  {
	 bandwidth = global_bandwidth;
	 global = 1;
	 buf_size = global_vc_size;
  }

  if(output_port >= num_routers + num_global_channels)
	buf_size = cn_vc_size;

   if(s->vc_occupancy[output_chan] >= buf_size)
    {
1242
	    printf("\n %lf Router %ld buffers overflowed from incoming terminals channel %d occupancy %d radix %d next_stop %d ", tw_now(lp),(long int) lp->gid, output_chan, s->vc_occupancy[output_chan], radix, next_stop);
1243
	    bf->c3 = 1;
1244 1245 1246
	    return;
	    //MPI_Finalize();
	    //exit(-1);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    }

#if DEBUG
if( msg->packet_ID == TRACK && next_stop != msg->dest_terminal_id && msg->chunk_id == num_chunks-1)
  {
   printf("\n (%lf) [Router %d] Packet %lld being sent to intermediate group router %d Final destination terminal %d Output Channel Index %d Saved vc %d msg_intm_id %d \n", 
              tw_now(lp), (int)lp->gid, msg->packet_ID, next_stop, 
	      msg->dest_terminal_id, output_chan, msg->saved_vc, msg->intm_group_id);
  }
#endif
 // If source router doesn't have global channel and buffer space is available, then assign to appropriate intra-group virtual channel 
  msg->saved_available_time = s->next_output_available_time[output_port];
1259
  ts = g_tw_lookahead + ((1/bandwidth) * CHUNK_SIZE) + tw_rand_exponential(lp->rng, (double)CHUNK_SIZE/200);
1260 1261 1262

  s->next_output_available_time[output_port] = max(s->next_output_available_time[output_port], tw_now(lp));
  s->next_output_available_time[output_port] += ts;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
  // dest can be a router or a terminal, so we must check
  void * m_data;
  if (next_stop == msg->dest_terminal_id){
      e = model_net_method_event_new(next_stop, 
              s->next_output_available_time[output_port] - tw_now(lp), lp,
              DRAGONFLY, (void**)&m, &m_data);
  }
  else{
      e = tw_event_new(next_stop, s->next_output_available_time[output_port] - tw_now(lp), lp);
      m = tw_event_data(e);
      m_data = m+1;
  }
  memcpy(m, msg, sizeof(terminal_message));
  if (msg->remote_event_size_bytes){
      memcpy(m_data, msg+1, msg->remote_event_size_bytes);
  }
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

  if(global)
    m->last_hop=GLOBAL;
  else
    m->last_hop = LOCAL;

  m->saved_vc = output_chan;
  msg->old_vc = output_chan;
  m->intm_lp_id = lp->gid;
  s->vc_occupancy[output_chan]++;

1290 1291
  /* Determine the event type. If the packet has arrived at the final destination
     router then it should arrive at the destination terminal next. */
1292 1293 1294 1295 1296 1297 1298 1299 1300
  if(next_stop == msg->dest_terminal_id)
  {
    m->type = T_ARRIVE;

    if(s->vc_occupancy[output_chan] >= cn_vc_size * num_chunks)
      s->output_vc_state[output_chan] = VC_CREDIT;
  }
  else
  {
1301
    /* The packet has to be sent to another router */
1302 1303
    m->type = R_ARRIVE;

1304
   /* If this is a global channel then the buffer space is different */
1305 1306 1307 1308 1309 1310 1311
   if( global )
   {
     if(s->vc_occupancy[output_chan] >= global_vc_size * num_chunks )
       s->output_vc_state[output_chan] = VC_CREDIT;
   }
  else
    {
1312
     /* buffer space is less for local channels */
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
     if( s->vc_occupancy[output_chan] >= local_vc_size * num_chunks )
	s->output_vc_state[output_chan] = VC_CREDIT;
    }
  }
  tw_event_send(e);
  return;
}

/* Packet arrives at the router and a credit is sent back to the sending terminal/router */
void 
router_packet_receive( router_state * s, 
			tw_bf * bf, 
			terminal_message * msg, 
			tw_lp * lp )
{
    tw_event *e;
    terminal_message *m;
    tw_stime ts;

    msg->my_N_hop++;
1333
    ts = g_tw_lookahead + tw_rand_exponential(lp->rng, (double)MEAN_INTERVAL/200);
1334 1335 1336 1337 1338
    num_chunks = msg->packet_size/CHUNK_SIZE;

    if(msg->packet_ID == TRACK && msg->chunk_id == num_chunks-1)
       printf("\n packet %lld chunk %d received at router %d ", msg->packet_ID, msg->chunk_id, (int)lp->gid);
   
1339
    // router self message - no need for method_event
1340 1341
    e = tw_event_new(lp->gid, ts, lp);
    m = tw_event_data(e);
1342
    memcpy(m, msg, sizeof(terminal_message) + msg->remote_event_size_bytes);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    m->type = R_SEND;
    router_credit_send(s, bf, msg, lp);
    tw_event_send(e);  
    return;
}

/* sets up the router virtual channels, global channels, local channels, compute node channels */
void router_setup(router_state * r, tw_lp * lp)
{
   codes_mapping_get_lp_info(lp->gid, lp_group_name, &mapping_grp_id, &mapping_type_id, lp_type_name, &mapping_rep_id, &mapping_offset);
   r->router_id=mapping_rep_id + mapping_offset;
   r->group_id=r->router_id/num_routers;

   int i;
1357
   int router_offset=(r->router_id % num_routers) * (num_global_channels / 2) + 1;
1358 1359 1360 1361 1362 1363

   r->global_channel = (int*)malloc(num_global_channels * sizeof(int));
   r->next_output_available_time = (tw_stime*)malloc(radix * sizeof(tw_stime));
   r->next_credit_available_time = (tw_stime*)malloc(radix * sizeof(tw_stime));
   r->vc_occupancy = (int*)malloc(radix * sizeof(int));
   r->output_vc_state = (int*)malloc(radix * sizeof(int));
1364
  
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
   for(i=0; i < radix; i++)
    {
       // Set credit & router occupancy
	r->next_output_available_time[i]=0;
        r->next_credit_available_time[i]=0;
        r->vc_occupancy[i]=0;
        r->output_vc_state[i]= VC_IDLE;
    }

   //round the number of global channels to the nearest even number
   for(i=0; i < num_global_channels; i++)
    {
      if(i % 2 != 0)
          {
1379 1380
             r->global_channel[i]=(r->router_id + (router_offset * num_routers))%total_routers;
             router_offset++;
1381 1382 1383
          }
          else
           {
1384
             r->global_channel[i]=r->router_id - ((router_offset) * num_routers);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
           }
        if(r->global_channel[i]<0)
         {
           r->global_channel[i]=total_routers+r->global_channel[i]; 
	 }
    }
   return;
}	

/* Update the buffer space associated with this router LP */
void router_buf_update(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
    int msg_indx = msg->vc_index;
    s->vc_occupancy[msg_indx]--;
    s->output_vc_state[msg_indx] = VC_IDLE;
    return;
}

void router_event(router_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
  *(int *)bf = (int)0;
  switch(msg->type)
   {
	   case R_SEND: // Router has sent a packet to an intra-group router (local channel)
 		 router_packet_send(s, bf, msg, lp);
           break;

	   case R_ARRIVE: // Router has received a packet from an intra-group router (local channel)
	        router_packet_receive(s, bf, msg, lp);
	   break;
	
	   case R_BUFFER:
	        router_buf_update(s, bf, msg, lp);
	   break;

	   default:
		  printf("\n (%lf) [Router %d] Router Message type not supported %d dest terminal id %d packet ID %d ", tw_now(lp), (int)lp->gid, msg->type, (int)msg->dest_terminal_id, (int)msg->packet_ID);
	   break;
   }	   
}

/* Reverse computation handler for a terminal event */
void terminal_rc_event_handler(terminal_state * s, tw_bf * bf, terminal_message * msg, tw_lp * lp)
{
   switch(msg->type)
   {
	   case T_GENERATE:
		 {
		 int i;
		 tw_rand_reverse_unif(lp->rng);

		 for(i = 0; i < num_chunks; i++)
                  tw_rand_reverse_unif(lp->rng);
1438 1439 1440 1441 1442
		 mn_stats* stat;
		 stat = model_net_find_stats(msg->category, s->dragonfly_stats_array);
		 stat->send_count--;
		 stat->send_bytes -= msg->packet_size;
		 stat->send_time -= (1/cn_bandwidth) * msg->packet_size;
1443 1444 1445 1446 1447 1448 1449 1450 1451