Commit 2f228ce7 authored by Brice Videau's avatar Brice Videau

Merge branch 'code_split' into 'master'

Code split

See merge request !3
parents 4e08270a 5072c00b
......@@ -2,6 +2,6 @@ AM_CFLAGS = -Wall -Werror -pedantic
lib_LTLIBRARIES = libexcit.la
libexcit_la_SOURCES = excit.c excit.h
libexcit_la_SOURCES = excit.c slice.c prod.c cons.c repeat.c hilbert2d.c range.c
include_HEADERS = excit.h
#include "dev/excit.h"
#include "cons.h"
static void circular_fifo_add(struct circular_fifo_s *fifo, ssize_t elem)
{
if (fifo->size == fifo->length) {
fifo->start = (fifo->start + 1) % fifo->length;
fifo->end = (fifo->end + 1) % fifo->length;
} else {
fifo->end = (fifo->end + 1) % fifo->length;
fifo->size++;
}
fifo->buffer[fifo->end] = elem;
}
static void circular_fifo_dump(const struct circular_fifo_s *fifo,
ssize_t *vals)
{
ssize_t i;
ssize_t j;
for (i = 0, j = fifo->start; i < fifo->size; i++) {
vals[i] = fifo->buffer[j];
j = (j + 1) % fifo->length;
}
}
static int cons_it_alloc(excit_t data)
{
struct cons_it_s *it = (struct cons_it_s *)data->data;
it->it = NULL;
it->n = 0;
it->fifo.length = 0;
it->fifo.start = 0;
it->fifo.end = -1;
it->fifo.size = 0;
it->fifo.buffer = NULL;
return EXCIT_SUCCESS;
}
static void cons_it_free(excit_t data)
{
struct cons_it_s *it = (struct cons_it_s *)data->data;
excit_free(it->it);
free(it->fifo.buffer);
}
static int cons_it_copy(excit_t ddst, const excit_t dsrc)
{
struct cons_it_s *dst = (struct cons_it_s *)ddst->data;
const struct cons_it_s *src = (const struct cons_it_s *)dsrc->data;
excit_t copy = excit_dup(src->it);
if (!copy)
return -EXCIT_EINVAL;
dst->it = copy;
dst->n = src->n;
dst->fifo.length = src->fifo.length;
dst->fifo.start = src->fifo.start;
dst->fifo.end = src->fifo.end;
dst->fifo.size = src->fifo.size;
dst->fifo.buffer =
(ssize_t *) malloc(src->fifo.length * sizeof(ssize_t));
if (!dst->fifo.buffer) {
excit_free(copy);
return -EXCIT_ENOMEM;
}
for (int i = 0; i < dst->fifo.length; i++)
dst->fifo.buffer[i] = src->fifo.buffer[i];
return EXCIT_SUCCESS;
}
static int cons_it_size(const excit_t data, ssize_t *size)
{
const struct cons_it_s *it = (const struct cons_it_s *)data->data;
ssize_t tmp_size = 0;
int err = excit_size(it->it, &tmp_size);
if (err)
return err;
*size = tmp_size - (it->n - 1);
return EXCIT_SUCCESS;
}
static int cons_it_split(const excit_t data, ssize_t n, excit_t *results)
{
ssize_t size;
int err = cons_it_size(data, &size);
if (err)
return err;
if (size < n)
return -EXCIT_EDOM;
if (!results)
return EXCIT_SUCCESS;
excit_t range = excit_alloc(EXCIT_RANGE);
if (!range)
return -EXCIT_ENOMEM;
err = excit_range_init(range, 0, size - 1, 1);
if (err)
goto error1;
err = excit_split(range, n, results);
if (err)
goto error1;
int i;
for (i = 0; i < n; i++) {
excit_t tmp, tmp2;
tmp = excit_dup(data);
if (!tmp)
goto error2;
tmp2 = results[i];
results[i] = excit_alloc(EXCIT_SLICE);
if (!results[i]) {
excit_free(tmp2);
goto error2;
}
err = excit_slice_init(results[i], tmp, tmp2);
if (err) {
excit_free(tmp2);
goto error2;
}
}
excit_free(range);
return EXCIT_SUCCESS;
error2:
for (; i >= 0; i--)
excit_free(results[i]);
error1:
excit_free(range);
return err;
}
static int cons_it_nth(const excit_t data, ssize_t n, ssize_t *indexes)
{
ssize_t size;
int err = cons_it_size(data, &size);
if (err)
return err;
if (n < 0 || n >= size)
return -EXCIT_EDOM;
const struct cons_it_s *it = (const struct cons_it_s *)data->data;
int dim = it->it->dimension;
if (indexes) {
for (int i = 0; i < it->n; i++) {
err = excit_nth(it->it, n + i, indexes + dim * i);
if (err)
return err;
}
}
return EXCIT_SUCCESS;
}
static int cons_it_rank(const excit_t data, const ssize_t *indexes,
ssize_t *n)
{
const struct cons_it_s *it = (const struct cons_it_s *)data->data;
ssize_t inner_n, inner_n_tmp;
int err = excit_rank(it->it, indexes, &inner_n);
if (err)
return err;
int dim = it->it->dimension;
for (int i = 1; i < it->n; i++) {
err = excit_rank(it->it, indexes + dim * i, &inner_n_tmp);
if (err)
return err;
if (inner_n_tmp != inner_n + 1)
return -EXCIT_EINVAL;
inner_n = inner_n_tmp;
}
if (n)
*n = inner_n - (it->n - 1);
return EXCIT_SUCCESS;
}
static int cons_it_pos(const excit_t data, ssize_t *n)
{
ssize_t inner_n;
const struct cons_it_s *it = (const struct cons_it_s *)data->data;
int err = excit_pos(it->it, &inner_n);
if (err)
return err;
if (n)
*n = inner_n - (it->n - 1);
return EXCIT_SUCCESS;
}
static int cons_it_peek(const excit_t data, ssize_t *indexes)
{
const struct cons_it_s *it = (const struct cons_it_s *)data->data;
int err;
int dim = it->it->dimension;
int n = it->n;
if (indexes) {
circular_fifo_dump(&it->fifo, indexes);
err = excit_peek(it->it, indexes + dim * (n - 1));
} else
err = excit_peek(it->it, NULL);
if (err)
return err;
return EXCIT_SUCCESS;
}
static int cons_it_next(excit_t data, ssize_t *indexes)
{
struct cons_it_s *it = (struct cons_it_s *)data->data;
int err;
int dim = it->it->dimension;
int n = it->n;
if (indexes) {
circular_fifo_dump(&it->fifo, indexes);
err = excit_next(it->it, indexes + dim * (n - 1));
} else
err = excit_next(it->it, NULL);
if (err)
return err;
if (indexes)
for (int i = dim * (n - 1); i < dim * n; i++)
circular_fifo_add(&it->fifo, indexes[i]);
return EXCIT_SUCCESS;
}
static int cons_it_rewind(excit_t data)
{
struct cons_it_s *it = (struct cons_it_s *)data->data;
int err = excit_rewind(it->it);
if (err)
return err;
it->fifo.start = 0;
it->fifo.end = -1;
it->fifo.size = 0;
for (int i = 0; i < it->n - 1; i++) {
int err;
err =
excit_next(it->it, it->fifo.buffer + it->it->dimension * i);
if (err)
return err;
it->fifo.size += it->it->dimension;
it->fifo.end += it->it->dimension;
}
return EXCIT_SUCCESS;
}
int excit_cons_init(excit_t it, excit_t src, ssize_t n)
{
ssize_t src_size;
int err;
if (!it || it->type != EXCIT_CONS || !src || n <= 0)
return -EXCIT_EINVAL;
err = excit_size(src, &src_size);
if (err)
return err;
if (src_size < n)
return -EXCIT_EINVAL;
struct cons_it_s *cons_it = (struct cons_it_s *)it->data;
free(cons_it->fifo.buffer);
excit_free(cons_it->it);
it->dimension = n * src->dimension;
cons_it->it = src;
cons_it->n = n;
cons_it->fifo.length = src->dimension * (n - 1);
cons_it->fifo.buffer =
(ssize_t *) malloc(cons_it->fifo.length * sizeof(ssize_t));
if (!cons_it->fifo.buffer)
return -EXCIT_ENOMEM;
err = cons_it_rewind(it);
if (err) {
free(cons_it->fifo.buffer);
return err;
}
return EXCIT_SUCCESS;
}
struct excit_func_table_s excit_cons_func_table = {
cons_it_alloc,
cons_it_free,
cons_it_copy,
cons_it_next,
cons_it_peek,
cons_it_size,
cons_it_rewind,
cons_it_split,
cons_it_nth,
cons_it_rank,
cons_it_pos
};
#ifndef EXCIT_CONS_H
#define EXCIT_CONS_H
#include "excit.h"
#include "dev/excit.h"
struct circular_fifo_s {
ssize_t length;
ssize_t start;
ssize_t end;
ssize_t size;
ssize_t *buffer;
};
struct cons_it_s {
excit_t it;
ssize_t n;
struct circular_fifo_s fifo;
};
extern struct excit_func_table_s excit_cons_func_table;
#endif //EXCIT_CONS_H
#ifndef EXCIT_DEV_H
#define EXCIT_DEV_H
#include "../excit.h"
struct excit_s {
struct excit_func_table_s *func_table;
ssize_t dimension;
enum excit_type_e type;
void *data;
};
#endif
This diff is collapsed.
#ifndef EXCIT_H
#define EXCIT_H 1
#include <stdlib.h>
/*
* The different types of iterator supported. All iterators use the same
* integer type (ssize_t) for values.
*/
enum excit_type_e {
EXCIT_INVALID, /*!< Tag for invalid iterators */
EXCIT_RANGE, /*!< Iterator over a range of values */
EXCIT_CONS, /*!< Sliding window iterator */
EXCIT_REPEAT, /*!< Ierator that stutters a certain amount of times */
EXCIT_HILBERT2D, /*!< Hilbert space filing curve */
EXCIT_PRODUCT, /*!< Iterator over the catesian product of iterators */
EXCIT_SLICE, /*!< Iterator using another iterator to index a third */
EXCIT_USER, /*!< User-defined iterator */
EXCIT_TYPE_MAX /*!< Guard */
EXCIT_INVALID, /*!< Tag for invalid iterators */
EXCIT_RANGE, /*!< Iterator over a range of values */
EXCIT_CONS, /*!< Sliding window iterator */
EXCIT_REPEAT, /*!< Ierator that stutters a certain amount of times */
EXCIT_HILBERT2D, /*!< Hilbert space filing curve */
EXCIT_PRODUCT, /*!< Iterator over the catesian product of iterators */
EXCIT_SLICE, /*!< Iterator using another iterator to index a third */
EXCIT_USER, /*!< User-defined iterator */
EXCIT_TYPE_MAX /*!< Guard */
};
/*
* Returns the string representation of an iterator type.
*/
const char * excit_type_name(enum excit_type_e type);
const char *excit_type_name(enum excit_type_e type);
/*
* The different possible return codes of an excit function.
*/
enum excit_error_e {
EXCIT_SUCCESS, /*!< Sucess */
EXCIT_STOPIT, /*!< Iteration space is depleted */
EXCIT_ENOMEM, /*!< Out of memory */
EXCIT_EINVAL, /*!< Parameter has an invalid value */
EXCIT_EDOM, /*!< Parameter is out of possible domain */
EXCIT_ENOTSUP, /*!< Operation is not supported */
EXCIT_ERROR_MAX /*!< Guard */
EXCIT_SUCCESS, /*!< Sucess */
EXCIT_STOPIT, /*!< Iteration space is depleted */
EXCIT_ENOMEM, /*!< Out of memory */
EXCIT_EINVAL, /*!< Parameter has an invalid value */
EXCIT_EDOM, /*!< Parameter is out of possible domain */
EXCIT_ENOTSUP, /*!< Operation is not supported */
EXCIT_ERROR_MAX /*!< Guard */
};
/*
* Returns the string representation of a return code.
*/
const char * excit_error_name(enum excit_error_e err);
const char *excit_error_name(enum excit_error_e err);
/*
* Opaque structure of an iterator
......@@ -77,66 +79,66 @@ struct excit_func_table_s {
* allocation, the inner data pointer will already be set.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*alloc)(excit_t it);
int (*alloc) (excit_t it);
/*
* This function is called during excit_free. After this function is
* called the iterator and the data will be freed.
*/
void (*free)(excit_t it);
void (*free) (excit_t it);
/*
* This funciton is called during excit_dup. It is responsible for
* duplicating the content of the inner data between src_it and dst_it.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*copy)(excit_t dst_it, const excit_t src_it);
int (*copy) (excit_t dst_it, const excit_t src_it);
/*
* This function is responsible for implementing the next functionality
* of the iterator.
* Returns EXCIT_SUCCESS, EXCIT_STOPIT or an error code.
*/
int (*next)(excit_t it, ssize_t *indexes);
int (*next) (excit_t it, ssize_t * indexes);
/*
* This function is responsible for implementing the peek functionality
* of the iterator.
* Returns EXCIT_SUCCESS, EXCIT_STOPIT or an error code.
*/
int (*peek)(const excit_t it, ssize_t *indexes);
int (*peek) (const excit_t it, ssize_t * indexes);
/*
* This function is responsible for implementing the size functionality
* of the iterator.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*size)(const excit_t it, ssize_t *size);
int (*size) (const excit_t it, ssize_t * size);
/*
* This function is responsible for implementing the rewind
* functionality of the iterator.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*rewind)(excit_t it);
int (*rewind) (excit_t it);
/*
* This function is responsible for implementing the split
* functionality of the iterator.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*split)(const excit_t it, ssize_t n, excit_t *results);
int (*split) (const excit_t it, ssize_t n, excit_t * results);
/*
* This function is responsible for implementing the nth functionality
* of the iterator.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*nth)(const excit_t it, ssize_t n, ssize_t *indexes);
int (*nth) (const excit_t it, ssize_t n, ssize_t * indexes);
/*
* This function is responsible for implementing the rank functionality
* of the iterator.
* Returns EXCIT_SUCCESS or an error code.
*/
int (*rank)(const excit_t it, const ssize_t *indexes, ssize_t *n);
int (*rank) (const excit_t it, const ssize_t * indexes, ssize_t * n);
/*
* This function is responsible for implementing the pos functionality
* of the iterator.
* Returns EXCIT_SUCCESS, EXCIT_STOPIT or an error code.
*/
int (*pos)(const excit_t it, ssize_t *n);
int (*pos) (const excit_t it, ssize_t * n);
};
/*
......@@ -203,7 +205,7 @@ int excit_type(excit_t it, enum excit_type_e *type);
* "dimension": a pointer where the result will be written.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_dimension(excit_t it, ssize_t *dimension);
int excit_dimension(excit_t it, ssize_t * dimension);
/*
* Gets the current element of an iterator and increments it.
......@@ -213,7 +215,7 @@ int excit_dimension(excit_t it, ssize_t *dimension);
* Returns EXCIT_SUCCESS if a valid element was retured or EXCIT_STOPIT if the
* iterator is depleted or an error code.
*/
int excit_next(excit_t it, ssize_t *indexes);
int excit_next(excit_t it, ssize_t * indexes);
/*
* Gets the current element of an iterator.
......@@ -223,7 +225,7 @@ int excit_next(excit_t it, ssize_t *indexes);
* Returns EXCIT_SUCCESS if a valid element was retured or EXCIT_STOPIT if the
* iterator is depleted or an error code.
*/
int excit_peek(const excit_t it, ssize_t *indexes);
int excit_peek(const excit_t it, ssize_t * indexes);
/*
* Rewinds an iterator to its initial state.
......@@ -238,7 +240,7 @@ int excit_rewind(excit_t it);
* "size": an pointer to the variable where the result will be stored.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_size(const excit_t it, ssize_t *size);
int excit_size(const excit_t it, ssize_t * size);
/*
* Splits an iterator envenly into several suub iterators.
......@@ -249,17 +251,18 @@ int excit_size(const excit_t it, ssize_t *size);
* Returns EXCIT_SUCCESS, -EXCIT_EDOM if the source iterator is too small to be
* subdivised in the wanted number or an error code.
*/
int excit_split(const excit_t it, ssize_t n, excit_t *results);
int excit_split(const excit_t it, ssize_t n, excit_t * results);
/*
* Gets the nth element of an iterator.
* "it": an iterator.
* "rank": rank of the element, comprised between 0 and the size of the iterator.
* "rank": rank of the element, comprised between 0 and the size of the
* iterator.
* "indexes": an array of indexes with a dimension corresponding to that of the
* iterator, no results is returned if NULL.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_nth(const excit_t it, ssize_t rank, ssize_t *indexes);
int excit_nth(const excit_t it, ssize_t rank, ssize_t * indexes);
/*
* Gets the rank of an element of an iterator.
......@@ -269,7 +272,7 @@ int excit_nth(const excit_t it, ssize_t rank, ssize_t *indexes);
* returned if NULL.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_rank(const excit_t it, const ssize_t *indexes, ssize_t *rank);
int excit_rank(const excit_t it, const ssize_t * indexes, ssize_t * rank);
/*
* Gets the position of the iterator.
......@@ -279,7 +282,7 @@ int excit_rank(const excit_t it, const ssize_t *indexes, ssize_t *rank);
* Returns EXCIT_SUCCESS or EXCIT_STOPIT if the iterator is depleted or an error
* code.
*/
int excit_pos(const excit_t it, ssize_t *rank);
int excit_pos(const excit_t it, ssize_t * rank);
/*
* Increments the iterator.
......@@ -297,7 +300,7 @@ int excit_skip(excit_t it);
* iterator, no results is returned if NULL.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_cyclic_next(excit_t it, ssize_t *indexes, int *looped);
int excit_cyclic_next(excit_t it, ssize_t * indexes, int *looped);
/*
* Initializes a range iterator to iterate from first to last (included) by sep.
......@@ -359,7 +362,7 @@ int excit_product_add_copy(excit_t it, excit_t added_it);
* "count": a pointer to a variable where the result will be stored.
* Returns EXCIT_SUCCESS or an error code.
*/
int excit_product_count(const excit_t it, ssize_t *count);
int excit_product_count(const excit_t it, ssize_t * count);
/*
* Splits a product iterator along the nth iterator.
......@@ -373,7 +376,7 @@ int excit_product_count(const excit_t it, ssize_t *count);
* be subdivised in the wanted number or an error code.
*/
int excit_product_split_dim(const excit_t it, ssize_t dim, ssize_t n,
excit_t *results);
excit_t * results);
/*
* Initializes a slice iterator by giving asrc iterator and an indexer iterator.
......
#include "dev/excit.h"
#include "hilbert2d.h"
static void rot(ssize_t n, ssize_t *x, ssize_t *y, ssize_t rx, ssize_t ry)
{
if (ry == 0) {
if (rx == 1) {
*x = n - 1 - *x;
*y = n - 1 - *y;
}
//Swap x and y
ssize_t t = *x;
*x = *y;
*y = t;
}
}
//convert (x,y) to d
static ssize_t xy2d(ssize_t n, ssize_t x, ssize_t y)
{
ssize_t rx, ry, s, d = 0;
for (s = n / 2; s > 0; s /= 2) {
rx = (x & s) > 0;
ry = (y & s) > 0;
d += s * s * ((3 * rx) ^ ry);
rot(s, &x, &y, rx, ry);
}
return d;
}
//convert d to (x,y)
static void d2xy(ssize_t n, ssize_t d, ssize_t *x, ssize_t *y)
{
ssize_t rx, ry, s, t = d;
*x = *y = 0;
for (s = 1; s < n; s *= 2) {
rx = 1 & (t / 2);
ry = 1 & (t ^ rx);
rot(s, x, y, rx, ry);
*x += s * rx;
*y += s * ry;
t /= 4;
}
}
/* End helper functions */
static int hilbert2d_it_alloc(excit_t data)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
it->n = 0;
it->range_it = NULL;
return EXCIT_SUCCESS;
}
static void hilbert2d_it_free(excit_t data)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
excit_free(it->range_it);
}
static int hilbert2d_it_copy(excit_t ddst, const excit_t dsrc)
{
struct hilbert2d_it_s *dst = (struct hilbert2d_it_s *)ddst->data;
const struct hilbert2d_it_s *src =
(const struct hilbert2d_it_s *)dsrc->data;
excit_t copy = excit_dup(src->range_it);
if (!copy)
return -EXCIT_EINVAL;
dst->range_it = copy;
dst->n = src->n;
return EXCIT_SUCCESS;
}
static int hilbert2d_it_rewind(excit_t data)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
return excit_rewind(it->range_it);
}
static int hilbert2d_it_peek(const excit_t data, ssize_t *val)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
ssize_t d;
int err;
err = excit_peek(it->range_it, &d);
if (err)
return err;
if (val)
d2xy(it->n, d, val, val + 1);
return EXCIT_SUCCESS;
}
static int hilbert2d_it_next(excit_t data, ssize_t *val)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
ssize_t d;
int err = excit_next(it->range_it, &d);
if (err)
return err;
if (val)
d2xy(it->n, d, val, val + 1);
return EXCIT_SUCCESS;
}
static int hilbert2d_it_size(const excit_t data, ssize_t *size)
{
const struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
return excit_size(it->range_it, size);
}
static int hilbert2d_it_nth(const excit_t data, ssize_t n, ssize_t *val)
{
ssize_t d;
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
int err = excit_nth(it->range_it, n, &d);
if (err)
return err;
if (val)
d2xy(it->n, d, val, val + 1);
return EXCIT_SUCCESS;
}
static int hilbert2d_it_rank(const excit_t data, const ssize_t *indexes,
ssize_t *n)
{
struct hilbert2d_it_s *it = (struct hilbert2d_it_s *)data->data;
if (indexes[0] < 0 || indexes[0] >= it->n || indexes[1] < 0
|| indexes[1] >= it->n)
return -EXCIT_EINVAL;